João B. Relvas
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by João B. Relvas.
Development | 2004
Lia S. Campos; Dino P. Leone; João B. Relvas; Cord Brakebusch; Reinhard Fässler; Ueli Suter; Charles ffrench-Constant
The emerging evidence that stem cells develop in specialised niches highlights the potential role of environmental factors in their regulation. Here we examine the role of β1 integrin/extracellular matrix interactions in neural stem cells. We find high levels of β1 integrin expression in the stem-cell containing regions of the embryonic CNS, with associated expression of the laminin α2 chain. Expression levels of lamininα 2 are reduced in the postnatal CNS, but a population of cells expressing high levels of β1 remains. Using neurospheres – aggregate cultures, derived from single stem cells, that have a three-dimensional architecture that results in the localisation of the stem cell population around the edge of the sphere – we show directly thatβ 1 integrins are expressed at high levels on neural stem cells and can be used for their selection. MAPK, but not PI3K, signalling is required for neural stem cell maintenance, as assessed by neurosphere formation, and inhibition or genetic ablation of β1 integrin using cre/lox technology reduces the level of MAPK activity. We conclude that integrins are therefore an important part of the signalling mechanisms that control neural stem cell behaviour in specific areas of the CNS.
Nature Cell Biology | 2002
Holly Colognato; Wia Baron; Virginia Avellana-Adalid; João B. Relvas; Anne Baron-Van Evercooren; Elisabeth Georges-Labouesse; Charles ffrench-Constant
Depending on the stage of development, a growth factor can mediate cell proliferation, survival or differentiation. The interaction of cell-surface integrins with extracellular matrix ligands can regulate growth factor responses and thus may influence the effect mediated by the growth factor. Here we show, by using mice lacking the α6 integrin receptor for laminins, that myelin-forming oligodendrocytes activate an integrin-regulated switch in survival signalling when they contact axonal laminins. This switch alters survival signalling mediated by neuregulin from dependence on the phosphatidylinositol-3-OH kinase (PI(3)K) pathway to dependence on the mitogen-activated kinase pathway. The consequent enhanced survival provides a mechanism for target-dependent selection during development of the central nervous system. This integrin-regulated switch reverses the capacity of neuregulin to inhibit the differentiation of precursors, thereby explaining how neuregulin subsequently promotes differentiation and survival in myelinating oligodendrocytes. Our results provide a general mechanism by which growth factors can exert apparently contradictory effects at different stages of development in individual cell lineages.
Journal of Cell Science | 2005
Dino P. Leone; João B. Relvas; Lia S. Campos; Silvio Hemmi; Cord Brakebusch; Reinhard Fässler; Charles ffrench-Constant; Ueli Suter
Neural stem cells give rise to undifferentiated nestin-positive progenitors that undergo extensive cell division before differentiating into neuronal and glial cells. The precise control of this process is likely to be, at least in part, controlled by instructive cues originating from the extracellular environment. Some of these cues are interpreted by the integrin family of extracellular matrix receptors. Using neurosphere cell cultures as a model system, we show that β1-integrin signalling plays a crucial role in the regulation of progenitor cell proliferation, survival and migration. Following conditional genetic ablation of the β1-integrin allele, and consequent loss of β1-integrin cell surface protein, mutant nestin-positive progenitor cells proliferate less and die in higher numbers than their wild-type counterparts. Mutant progenitor cell migration on different ECM substrates is also impaired. These effects can be partially compensated by the addition of exogenous growth factors. Thus, β1-integrin signalling and growth factor signalling tightly interact to control the number and migratory capacity of nestin-positive progenitor cells.
Journal of Cell Biology | 2007
Yves Benninger; Tina Thurnherr; Jorge A. Pereira; Sven Krause; Xunwei Wu; Anna Chrostek-Grashoff; Dominik Herzog; Klaus-Armin Nave; Robin J.M. Franklin; Dies Meijer; Cord Brakebusch; Ueli Suter; João B. Relvas
During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue-specific conditional gene targeting to show that members of the Rho GTPases, cdc42 and rac1, have different and essential roles in axon sorting by Schwann cells. Our results indicate that although cdc42 is required for normal Schwann cell proliferation, rac1 regulates Schwann cell process extension and stabilization, allowing efficient radial sorting of axon bundles.
Science | 2010
Laurent Cotter; Murat Özçelik; Claire Jacob; Jorge A. Pereira; Veronica Locher; Reto Baumann; João B. Relvas; Ueli Suter; Nicolas Tricaud
Too Much of a Good Thing In peripheral nerves, the insulating myelin sheath speeds up electrical conductivity by allowing impulses to skip down the axon from node to node. Axons signal using neuregulin to get the Schwann cells to begin their wrap-around insulation project. But when is enough myelin too much? Cotter et al. (p. 1415, published online 6 May) have now found the signal that stops further rounds of myelin insulation. In developing mice, the proteins Dlg1 (mammalian disc large 1) and PTEN (phosphatase and tensin homolog) were involved in calling a halt to insulation during early development. The balance between not enough and too much myelin insulation is controlled by opposing signals, which together optimize both the myelination and the velocity of nerve conduction. To prevent too much myelin from causing trouble, two proteins act to limit insulation of axons. The thickness of the myelin sheath that insulates axons is fitted for optimal nerve conduction velocity. Here, we show that, in Schwann cells, mammalian disks large homolog 1 (Dlg1) interacts with PTEN (phosphatase and tensin homolog deleted on chromosome 10) to inhibit axonal stimulation of myelination. This mechanism limits myelin sheath thickness and prevents overmyelination in mouse sciatic nerves. Removing this brake results also in myelin outfoldings and demyelination, characteristics of some peripheral neuropathies. Indeed, the Dlg1 brake is no longer functional in a mouse model of Charcot-Marie-Tooth disease. Therefore, negative regulation of myelination appears to be essential for optimization of nerve conduction velocity and myelin maintenance.
American Journal of Human Genetics | 2007
Claudia Stendel; Andreas Roos; Tine Deconinck; Jorge A. Pereira; François Castagner; Axel Niemann; Janbernd Kirschner; Rudolf Korinthenberg; Uwe-Peter Ketelsen; Esra Battaloglu; Yesim Parman; Garth A. Nicholson; Robert Ouvrier; Jürgen Seeger; Joachim Weis; Alexander Krüttgen; Sabine Rudnik-Schöneborn; Carsten Bergmann; Ueli Suter; Klaus Zerres; Vincent Timmerman; João B. Relvas; Jan Senderek
GTPases of the Rho subfamily are widely involved in the myelination of the vertebrate nervous system. Rho GTPase activity is temporally and spatially regulated by a set of specific guanine nucleotide exchange factors (GEFs). Here, we report that disruption of frabin/FGD4, a GEF for the Rho GTPase cell-division cycle 42 (Cdc42), causes peripheral nerve demyelination in patients with autosomal recessive Charcot-Marie-Tooth (CMT) neuropathy. These data, together with the ability of frabin to induce Cdc42-mediated cell-shape changes in transfected Schwann cells, suggest that Rho GTPase signaling is essential for proper myelination of the peripheral nervous system.
Current Biology | 2001
João B. Relvas; Anna Setzu; Wia Baron; Philip C. Buttery; Susan E. LaFlamme; Robin J.M. Franklin; Charles ffrench-Constant
Myelination represents a remarkable example of cell specialization and cell-cell interaction in development. During this process, axons are wrapped by concentric layers of cell membrane derived either from central nervous system (CNS) oligodendrocytes or peripheral nervous system Schwann cells. In the CNS, oligodendrocytes elaborate a membranous extension with an area of more than 1000 times that of the cell body. The mechanisms regulating this change in cell shape remain poorly understood. Signaling mechanisms regulated by cell surface adhesion receptors of the integrin family represent likely candidates. Integrins link the extracellular environment of the cell with both intracellular signaling molecules and the cytoskeleton and have been shown to regulate the activity of GTPases implicated in the control of cell shape. Our previous work has established that oligodendrocytes and their precursors express a limited repertoire of integrins. One of these, the alpha6beta1 laminin receptor, can interact with laminin-2 substrates to enhance oligodendrocyte myelin membrane formation in cell culture. However, these experiments do not address the important question of integrin function during myelination in vivo, nor do they define the respective roles of the alpha and beta subunits in the signaling pathways involved. Here, we use a dominant-negative approach to provide, for the first time, evidence that beta1 integrin function is required for myelination in vivo and use chimeric integrins to dissect apart the roles of the extracellular and cytoplasmic domains of the alpha6 subunit in the signaling pathways of myelination.
The Journal of Neuroscience | 2006
Tina Thurnherr; Yves Benninger; Xunwei Wu; Anna Chrostek; Sven Krause; Klaus-Armin Nave; Robin J.M. Franklin; Cord Brakebusch; Ueli Suter; João B. Relvas
The formation of myelin sheaths in the CNS is the result of a complex series of events involving oligodendrocyte progenitor cell (OPC) proliferation, directed migration, and the morphological changes associated with axon ensheathment and myelination. To examine the role of Rho GTPases in oligodendrocyte biology, we have used a conditional tissue-specific gene-targeting approach. Ablation of Cdc42 in cells of the oligodendrocyte lineage did not affect OPC proliferation, directed migration, or in vitro differentiation, but it led to the formation of a unique and stage-specific myelination phenotype. This was characterized by the extraordinary enlargement of the inner tongue of the oligodendrocyte process and concomitant formation of a myelin outfolding as a result of abnormal accumulation of cytoplasm in this region. Ablation of Rac1 also resulted in the abnormal accumulation of cytoplasm in the inner tongue of the oligodendrocyte process, and we provide genetic evidence that rac1 synergizes with cdc42 in a gene dosage-dependent way to regulate myelination.
Journal of Cell Biology | 2009
Jorge A. Pereira; Yves Benninger; Reto Baumann; Ana Filipa Gonçalves; Murat Özçelik; Tina Thurnherr; Nicolas Tricaud; Dies Meijer; Reinhard Fässler; Ueli Suter; João B. Relvas
During development, Schwann cells (SCs) interpret different extracellular cues to regulate their migration, proliferation, and the remarkable morphological changes associated with the sorting, ensheathment, and myelination of axons. Although interactions between extracellular matrix proteins and integrins are critical to some of these processes, the downstream signaling pathways they control are still poorly understood. Integrin-linked kinase (ILK) is a focal adhesion protein that associates with multiple binding partners to link integrins to the actin cytoskeleton and is thought to participate in integrin and growth factor–mediated signaling. Using SC-specific gene ablation, we report essential functions for ILK in radial sorting of axon bundles and in remyelination in the peripheral nervous system. Our in vivo and in vitro experiments show that ILK negatively regulates Rho/Rho kinase signaling to promote SC process extension and to initiate radial sorting. ILK also facilitates axon remyelination, likely by promoting the activation of downstream molecules such as AKT/protein kinase B.
Cell Stem Cell | 2009
Sebastian Fuchs; Dominik Herzog; Grzegorz Sumara; Stine Büchmann-Møller; Gianluca Civenni; Xunwei Wu; Anna Chrostek-Grashoff; Ueli Suter; Romeo Ricci; João B. Relvas; Cord Brakebusch; Lukas Sommer
The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially regulated by small Rho GTPases. Deletion of either Cdc42 or Rac1 in the NC results in size reduction of multiple NC target structures because of increased cell-cycle exit, while NC cells emigrating from the neural tube are not affected. Consistently, Cdc42 or Rac1 inactivation reduces self-renewal and proliferation of later stage, but not early migratory NCSCs. This stage-specific requirement for small Rho GTPases is due to changes in NCSCs that, during development, acquire responsiveness to mitogenic EGF acting upstream of both Cdc42 and Rac1. Thus, our data reveal distinct mechanisms for growth control of NCSCs from different developmental stages.