Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Ferrero is active.

Publication


Featured researches published by Andrea Ferrero.


British Journal of Radiology | 2016

High-resolution 18F-FDG PET/CT for assessing disease activity in rheumatoid and psoriatic arthritis: findings of a prospective pilot study

Abhijit J. Chaudhari; Andrea Ferrero; Felipe Godinez; Kai Yang; David K. Shelton; John C. Hunter; Stanley M. Naguwa; John M. Boone; Siba P. Raychaudhuri; Ramsey D. Badawi

OBJECTIVE Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) commonly affect the small joints of the wrist and hand. We evaluated the performance of a new, high-resolution extremity positron emission tomography (PET)/CT scanner for characterizing and quantifying pathologies associated with the two arthritides in the wrist and hand joints. METHODS Patients with RA or PsA underwent fluorine-18 fludeoxyglucose ((18)F-FDG) PET/CT wrist and hand imaging, respectively, on the high-resolution scanner. Calibrated CT images and co-registered PET images were reconstructed. PET/CT was derived for the radiocarpal and pisiform-triquetral compartments, joints with erosive changes, sites of synovitis or tenosynovitis and the nail bed and were correlated with clinical and MRI findings. RESULTS Significantly elevated (18)F-FDG uptake was measured for the radiocarpal and pisiform-triquetral compartments and at sites of bone erosion, synovitis, pannus and oedema, compared with unaffected joints (p < 0.05) in patients with RA, consistent with their clinical findings. In patients with PsA, significantly elevated (18)F-FDG uptake was measured for joints with synovitis compared with unaffected joints (p < 0.05), with patterns of (18)F-FDG uptake along the tendons, at the enthesis and in the nail bed, consistent with tenosynovitis, enthesitis and nail dystrophy, respectively. CONCLUSION High-resolution (18)F-FDG PET/CT imaging of the wrist and hand is feasible in an RA or PsA patient cohort and is capable of providing quantifiable measures of disease activity (synovitis, enthesitis, oedema and bone destruction). ADVANCES IN KNOWLEDGE High-resolution PET/CT imaging shows promise as a tool for understanding the pathogenesis of the arthritic process and for non-invasive, objective assessment of RA or PsA severity and therapy selection.


Proceedings of SPIE | 2017

Ultra-High Spatial Resolution, Multi-Energy CT using Photon Counting Detector Technology.

Shuai Leng; R. Gutjahr; Andrea Ferrero; Steffen Kappler; Andre Henning; Ahmed F. Halaweish; Wei Zhou; Juan C. Montoya; Cynthia H. McCollough

Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.


Academic Radiology | 2016

Quantitative Prediction of Stone Fragility From Routine Dual Energy CT: Ex vivo proof of Feasibility

Andrea Ferrero; Juan C. Montoya; Lisa E. Vaughan; Alice E. Huang; Ian O. McKeag; Felicity T. Enders; James C. Williams; Cynthia H. McCollough

RATIONALE AND OBJECTIVES Previous studies have demonstrated a qualitative relationship between stone fragility and internal stone morphology. The goal of this study was to quantify morphologic features from dual-energy computed tomography (CT) images and assess their relationship to stone fragility. MATERIALS AND METHODS Thirty-three calcified urinary stones were scanned with micro-CT. Next, they were placed within torso-shaped water phantoms and scanned with the dual-energy CT stone composition protocol in routine use at our institution. Mixed low- and high-energy images were used to measure volume, surface roughness, and 12 metrics describing internal morphology for each stone. The ratios of low- to high-energy CT numbers were also measured. Subsequent to imaging, stone fragility was measured by disintegrating each stone in a controlled ex vivo experiment using an ultrasonic lithotripter and recording the time to comminution. A multivariable linear regression model was developed to predict time to comminution. RESULTS The average stone volume was 300 mm3 (range: 134-674 mm3). The average comminution time measured ex vivo was 32 seconds (range: 7-115 seconds). Stone volume, dual-energy CT number ratio, and surface roughness were found to have the best combined predictive ability to estimate comminution time (adjusted R2 = 0.58). The predictive ability of mixed dual-energy CT images, without use of the dual-energy CT number ratio, to estimate comminution time was slightly inferior, with an adjusted R2 of 0.54. CONCLUSIONS Dual-energy CT number ratios, volume, and morphologic metrics may provide a method for predicting stone fragility, as measured by time to comminution from ultrasonic lithotripsy.


Academic Radiology | 2016

Original InvestigationQuantitative Prediction of Stone Fragility From Routine Dual Energy CT: Ex vivo proof of Feasibility

Andrea Ferrero; Juan C. Montoya; Lisa E. Vaughan; Alice E. Huang; Ian O. McKeag; Felicity T. Enders; James C. Williams; Cynthia H. McCollough

RATIONALE AND OBJECTIVES Previous studies have demonstrated a qualitative relationship between stone fragility and internal stone morphology. The goal of this study was to quantify morphologic features from dual-energy computed tomography (CT) images and assess their relationship to stone fragility. MATERIALS AND METHODS Thirty-three calcified urinary stones were scanned with micro-CT. Next, they were placed within torso-shaped water phantoms and scanned with the dual-energy CT stone composition protocol in routine use at our institution. Mixed low- and high-energy images were used to measure volume, surface roughness, and 12 metrics describing internal morphology for each stone. The ratios of low- to high-energy CT numbers were also measured. Subsequent to imaging, stone fragility was measured by disintegrating each stone in a controlled ex vivo experiment using an ultrasonic lithotripter and recording the time to comminution. A multivariable linear regression model was developed to predict time to comminution. RESULTS The average stone volume was 300 mm3 (range: 134-674 mm3). The average comminution time measured ex vivo was 32 seconds (range: 7-115 seconds). Stone volume, dual-energy CT number ratio, and surface roughness were found to have the best combined predictive ability to estimate comminution time (adjusted R2 = 0.58). The predictive ability of mixed dual-energy CT images, without use of the dual-energy CT number ratio, to estimate comminution time was slightly inferior, with an adjusted R2 of 0.54. CONCLUSIONS Dual-energy CT number ratios, volume, and morphologic metrics may provide a method for predicting stone fragility, as measured by time to comminution from ultrasonic lithotripsy.


Proceedings of SPIE | 2017

Renal stone characterization using high resolution imaging mode on a photon counting detector CT system

Andrea Ferrero; R. Gutjahr; Andre Henning; Steffen Kappler; Ahmed F. Halaweish; Dilbar Abdurakhimova; Z. Peterson; Juan C. Montoya; Shuai Leng; Cynthia H. McCollough

In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.


Proceedings of SPIE | 2017

Lung nodule volume quantification and shape differentiation with an ultra-high resolution technique on a photon counting detector CT system

Wei Zhou; Juan C. Montoya; R. Gutjahr; Andrea Ferrero; Ahmed F. Halaweish; Steffen Kappler; Cynthia H. McCollough; Shuai Leng

A new ultra high-resolution (UHR) mode has been implemented on a whole body photon counting-detector (PCD) CT system. The UHR mode has a pixel size of 0.25 mm by 0.25 mm at the iso-center, while the conventional (macro) mode is limited to 0.5 mm by 0.5 mm. A set of synthetic lung nodules (two shapes, five sizes, and two radio-densities) was scanned using both the UHR and macro modes and reconstructed with 2 reconstruction kernels (4 sets of images in total). Linear regression analysis was performed to compare measured nodule volumes from CT images to reference volumes. Surface curvature was calculated for each nodule and the full width half maximum (FWHM) of the curvature histogram was used as a shape index to differentiate sphere and star shape nodules. Receiver operating characteristic (ROC) analysis was performed and area under the ROC curve (AUC) was used as a figure of merit for the differentiation task. Results showed strong linear relationship between measured nodule volume and reference standard for both UHR and macro mode. For all nodules, volume estimation was more accurate using UHR mode with sharp kernel (S80f), with lower mean absolute percent error (MAPE) (6.5%) compared with macro mode (11.1% to 12.9%). The improvement of volume measurement from UHR mode was more evident particularly for small nodule size (3mm, 5mm), or star-shape nodules. Images from UHR mode with sharp kernel (S80f) consistently demonstrated the best performance (AUC = 0.85) when separating star from sphere shape nodules among all acquisition and reconstruction modes. Our results showed the advantages of UHR mode on a PCD CT scanner in lung nodule characterization. Various clinical applications, including quantitative imaging, can benefit substantially from this high resolution mode.


Medical Physics | 2016

WE-FG-207B-09: Experimental Assessment of Noise and Spatial Resolution in Virtual Non-Contrast Dual-Energy CT Images Across Multiple Patient Sizes and CT Systems

Juan C. Montoya; Andrea Ferrero; Shuai Leng; Cynthia H. McCollough

PURPOSE To investigate the noise and spatial resolution properties of virtual non-contrast (VNC) dual-energy CT images compared to true non-contrast (TNC) images across multiple patient sizes and CT systems. METHODS Torso-shaped water phantoms with lateral widths of 25, 30, 35, 40 and 45 cm and a high resolution bar pattern phantom (Catphan CTP528) were scanned using 2nd and 3rd generation dual-source CT systems (Scanner A: Somatom Definition Flash, Scanner B: Somatom Force, Siemens Healthcare) in dual-energy scan mode with the same radiation dose for a given phantom size. Tube potentials of 80/Sn140 and 100/Sn140 on Scanner A and 80/Sn150, 90/Sn150 and 100/Sn150 on Scanner B were evaluated to examine the impact of spectral separation. Images were reconstructed using a medium sharp quantitative kernel (Qr40), 1.0-mm thickness, 1.0-mm interval and 20 cm field of view. Mixed images served as TNC images. VNC images were created using commercial software (Virtual Unenhanced, Syngo VIA Version VA30, Siemens Healthcare). The noise power spectrum (NPS), area under the NPS, peak frequency of the NPS and image noise were measured for every phantom size and tube potential combination in TNC and VNC images. Results were compared within and between CT systems. RESULTS Minimal shift in NPS peak frequencies was observed in VNC images compared to TNC for NPS having pronounced peaks. Image noise and area under the NPS were higher in VNC images compared to TNC images across all tube potentials and for scanner A compared to scanner B. Limiting spatial resolution was deemed to be identical between VNC and TNC images. CONCLUSION Quantitative assessment of image quality in VNC images demonstrated higher noise but equivalent spatial resolution compared to TNC images. Decreased noise was observed in the 3rd generation dual-source CT system for tube potential pairs having greater spectral separation. Dr. McCollough receives research support from Siemens Healthcare.


Radiology | 2018

Detection and Characterization of Renal Stones by Using Photon-Counting–based CT

Roy P. Marcus; Joel G. Fletcher; Andrea Ferrero; Shuai Leng; Ahmed F. Halaweish; Ralf Gutjahr; Terri J. Vrtiska; Michael L. Wells; Felicity T. Enders; Cynthia H. McCollough

Purpose To compare a research photon-counting-detector (PCD) CT scanner to a dual-source, dual-energy CT scanner for the detection and characterization of renal stones in human participants with known stones. Materials and Methods Thirty study participants (median age, 61 years; 10 women) underwent a clinical renal stone characterization scan by using dual-energy CT and a subsequent research PCD CT scan by using the same radiation dose (as represented by volumetric CT dose index). Two radiologists were tasked with detection of stones, which were later characterized as uric acid or non-uric acid by using a commercial dual-energy CT analysis package. Stone size and contrast-to-noise ratio were additionally calculated. McNemar odds ratios and Cohen k were calculated separately for all stones and small stones (≤3 mm). Results One-hundred sixty renal stones (91 stones that were ≤ 3 mm in axial length) were visually detected. Compared with 1-mm-thick routine images from dual-energy CT, the odds of detecting a stone at PCD CT were 1.29 (95% confidence interval: 0.48, 3.45) for all stones. Stone segmentation and characterization were successful at PCD CT in 70.0% (112 of 160) of stones versus 54.4% (87 of 160) at dual-energy CT, and was superior for stones 3 mm or smaller at PCD CT (45 vs 25 stones, respectively; P = .002). Stone characterization agreement between scanners for stones of all sizes was substantial (k = 0.65). Conclusion Photon-counting-detector CT is similar to dual-energy CT for helping to detect renal stones and is better able to help characterize small renal stones.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Determination of optimal image type and lowest detectable concentration for iodine detection on a photon counting detector-based multi-energy CT system

Wei Zhou; Rachel Schornak; Gregory Michalak; Jayse Weaver; Dilbar Abdurakhimova; Andrea Ferrero; Kenneth A. Fetterly; Cynthia H. McCollough; Shuai Leng

Photon counting detector (PCD) based multi-energy CT is able to generate different types of images such as virtual monoenergetic images (VMIs) and material specific images (e.g., iodine maps) in addition to the conventional single energy images. The purpose of this study is to determine the image type that has optimal iodine detection and to determine the lowest detectable iodine concentration using a PCD-CT system. A 35 cm body phantom with iodine inserts of 4 concentrations and 2 sizes was scanned on a research PCD-CT system. For each iodine concentration, 80 repeated scans were performed and images were reconstructed for each energy threshold. In addition, VMIs at different keVs and iodine maps were also generated. CNR was measured for each type of images. A channelized Hotelling observer was used to assess iodine detectability after being validated with human observer studies, with area under the ROC curve (AUC) as a figure of merit. The agreement between model and human observer performance indicated that model observer could serve as an effective approach to determine optimal image type for the clinical practice and to determine the lowest detectable iodine concentration. Results demonstrated that for all size and concentration combinations, VMI at 70 keV had similar performance as that of threshold low images, both of which outperformed the iodine map images. At the AUC value of 0.8, iodine concentration as low as 0.2 mgI/cc could be detected for an 8 mm object and 0.5 mgI/cc for a 4 mm object with a 5 mm slice thickness.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Simulating low-dose cone-beam CT: a phantom study

Andrea Ferrero; Kenneth A. Fetterly; Beth A. Schueler; Lifeng Yu

Our institution routinely uses limited-angle cone-beam CT (CBCT) from a C-arm with 3D capabilities to diagnose and treat cardiovascular and orthopedic diseases in both adult and pediatric patients. While CBCT contributes to qualitative and quantitative assessment of both normal and abnormal patient anatomy, it also contributes substantially to patient radiation dose. Reducing the dose associated with CBCT exams while maintaining clinical utility can be considered to be of benefit to patients for whom CBCT is routinely used and may extend its adoption to clinical tasks and patient populations where the dose is currently considered prohibitive. In this work we developed and validated a method to simulate low-dose CBCT images from standard-dose projection images. The method was based on adding random noise to real projection images. The method was validated using an anthropomorphic thorax phantom of variable size with a custom-made insert containing iodine contrast rods of variable concentration. Images reconstructed from the low-dose simulations were compared to the actually acquired lower-dose images. Subtraction images of the simulated and acquired lower-dose images demonstrated a lack of residual structure patterns, indicating that differences between the image sets were consistent with random noise only. Noise power spectrum (NPS) and iodine signal-difference-to-noise ratio (SDNR) showed good agreement between simulated and acquired lower-dose images for dose levels between 70% and 30% of the routine dose. The average difference in iodine SDNR between simulated and acquired low-dose images was below 5% for all dose levels and phantom sizes. This work demonstrates the feasibility of accurately simulating low-dose CBCT based on real images acquired using standard dose and degrading the images by adding noise.

Collaboration


Dive into the Andrea Ferrero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge