Andrea Holt
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Holt.
Journal of the American Chemical Society | 2009
Sivaramakrishnan Ramadurai; Andrea Holt; Geert van den Bogaart; J. Antoinette Killian; Berend Poolman
We measured the lateral mobility of integral membrane proteins reconstituted in giant unilamellar vesicles (GUVs), using fluorescence correlation spectroscopy. Receptor, channel, and transporter proteins with 1-36 transmembrane segments (lateral radii ranging from 0.5 to 4 nm) and a alpha-helical peptide (radius of 0.5 nm) were fluorescently labeled and incorporated into GUVs. At low protein-to-lipid ratios (i.e., 10-100 proteins per microm(2) of membrane surface), the diffusion coefficient D displayed a weak dependence on the hydrodynamic radius (R) of the proteins [D scaled with ln(1/R)], consistent with the Saffman-Delbruck model. At higher protein-to lipid ratios (up to 3000 microm(-2)), the lateral diffusion coefficient of the molecules decreased linearly with increasing the protein concentration in the membrane. The implications of our findings for protein mobility in biological membranes (protein crowding of approximately 25,000 microm(-2)) and use of diffusion measurements for protein geometry (size, oligomerization) determinations are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Lars V. Schäfer; Djurre H. de Jong; Andrea Holt; Andrzej J. Rzepiela; Alex H. de Vries; Bert Poolman; J. Antoinette Killian; Siewert J. Marrink
Cell membranes are comprised of multicomponent lipid and protein mixtures that exhibit a complex partitioning behavior. Regions of structural and compositional heterogeneity play a major role in the sorting and self-assembly of proteins, and their clustering into higher-order oligomers. Here, we use computer simulations and optical microscopy to study the sorting of transmembrane helices into the liquid-disordered domains of phase-separated model membranes, irrespective of peptide–lipid hydrophobic mismatch. Free energy calculations show that the enthalpic contribution due to the packing of the lipids drives the lateral sorting of the helices. Hydrophobic mismatch regulates the clustering into either small dynamic or large static aggregates. These results reveal important molecular driving forces for the lateral organization and self-assembly of transmembrane helices in heterogeneous model membranes, with implications for the formation of functional protein complexes in real cells.
European Biophysics Journal | 2010
Andrea Holt; J. Antoinette Killian
In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function.
Biophysical Journal | 2010
Sivaramakrishnan Ramadurai; Andrea Holt; Lars V. Schäfer; Dirk T. S. Rijkers; Siewert J. Marrink; J. Antoinette Killian; Bert Poolman
We investigated the effect of amino acid composition and hydrophobic length of alpha-helical transmembrane peptides and the role of electrostatic interactions on the lateral diffusion of the peptides in lipid membranes. Model peptides of varying length and composition, and either tryptophans or lysines as flanking residues, were synthesized. The peptides were labeled with the fluorescent label Alexa Fluor 488 and incorporated into phospholipid bilayers of different hydrophobic thickness and composition. Giant unilamellar vesicles were formed by electroformation, and the lateral diffusion of the transmembrane peptides (and lipids) was determined by fluorescence correlation spectroscopy. In addition, we performed coarse-grained molecular-dynamics simulations of single peptides of different hydrophobic lengths embedded in planar membranes of different thicknesses. Both the experimental and simulation results indicate that lateral diffusion is sensitive to membrane thickness between the peptides and surrounding lipids. We did not observe a difference in the lateral diffusion of the peptides with respect to the presence of tryptophans or lysines as flanking residues. The specific lipid headgroup composition of the membrane has a much less pronounced impact on the diffusion of the peptides than does the hydrophobic thickness.
Biophysical Journal | 2010
Andrea Holt; Léa Rougier; Valérie Réat; Franck Jolibois; Jerzy Czaplicki; J. Antoinette Killian; Alain Milon
A new solid-state NMR-based strategy is established for the precise and efficient analysis of orientation and dynamics of transmembrane peptides in fluid bilayers. For this purpose, several dynamically averaged anisotropic constraints, including (13)C and (15)N chemical shift anisotropies and (13)C-(15)N dipolar couplings, were determined from two different triple-isotope-labeled WALP23 peptides ((2)H, (13)C, and (15)N) and combined with previously published quadrupolar splittings of the same peptide. Chemical shift anisotropy tensor orientations were determined with quantum chemistry. The complete set of experimental constraints was analyzed using a generalized, four-parameter dynamic model of the peptide motion, including tilt and rotation angle and two associated order parameters. A tilt angle of 21 degrees was determined for WALP23 in dimyristoylphosphatidylcholine, which is much larger than the tilt angle of 5.5 degrees previously determined from (2)H NMR experiments. This approach provided a realistic value for the tilt angle of WALP23 peptide in the presence of hydrophobic mismatch, and can be applied to any transmembrane helical peptide. The influence of the experimental data set on the solution space is discussed, as are potential sources of error.
Biophysical Journal | 2009
Andrea Holt; Rob B. M. Koehorst; Tania Rutters-Meijneke; Michael H. Gelb; Dirk T. S. Rijkers; Marcus A. Hemminga; J. Antoinette Killian
In this study the membrane orientation of a tryptophan-flanked model peptide, WALP23, was determined by using peptides that were labeled at different positions along the sequence with the environmentally sensitive fluorescent label BADAN. The fluorescence properties, reflecting the local polarity, were used to determine the tilt and rotation angles of the peptide based on an ideal alpha-helix model. For WALP23 inserted in dioleoylphosphatidylcholine (DOPC), an estimated tilt angle of the helix with respect to the bilayer normal of 24 degrees +/- 5 degrees was obtained. When the peptides were inserted into bilayers with different acyl chain lengths or containing different concentrations of cholesterol, small changes in tilt angle were observed as response to hydrophobic mismatch, whereas the rotation angle appeared to be independent of lipid composition. In all cases, the tilt angles were significantly larger than those previously determined from (2)H NMR experiments, supporting recent suggestions that the relatively long timescale of (2)H NMR measurements may result in an underestimation of tilt angles due to partial motional averaging. It is concluded that although the fluorescence technique has a rather low resolution and limited accuracy, it can be used to resolve the discrepancies observed between previous (2)H NMR experiments and molecular-dynamics simulations.
Biochemistry | 2008
Andrea Holt; Rodrigo F.M. de Almeida; Thomas K.M. Nyholm; Luís M. S. Loura; Anna E. Daily; Rutger W.H.M. Staffhorst; Dirk T. S. Rijkers; Roger E. Koeppe; Manuel Prieto; J. Antoinette Killian
Recently, several indications have been found that suggest a preferential interaction between cholesterol and tryptophan residues located near the membrane-water interface. The aim of this study was to investigate by direct methods how tryptophan and cholesterol interact with each other and what the possible consequences are for membrane organization. For this purpose, we used cholesterol-containing model membranes of dimyristoylphosphatidylcholine (DMPC) in which a transmembrane model peptide with flanking tryptophans [acetyl-GWW(LA)8LWWA-amide], called WALP23, was incorporated to mimic interfacial tryptophans of membrane proteins. These model systems were studied with two complementary methods. (1) Steady-state and time-resolved Förster resonance energy transfer (FRET) experiments employing the fluorescent cholesterol analogue dehydroergosterol (DHE) in combination with a competition experiment with cholesterol were used to obtain information about the distribution of cholesterol in the bilayer in the presence of WALP23. The results were consistent with a random distribution of cholesterol which indicates that cholesterol and interfacial tryptophans are not preferentially located next to each other in these bilayer systems. (2) Solid-state 2H NMR experiments employing either deuterated cholesterol or indole ring-deuterated WALP23 peptides were performed to study the orientation and dynamics of both molecules. The results showed that the quadrupolar splittings of labeled cholesterol were not affected by an interaction with tryptophan-flanked peptides and, vice versa, that the quadrupolar splittings of labeled indole rings in WALP23 are not significantly influenced by addition of cholesterol to the bilayer. Therefore, both NMR and fluorescence spectroscopy results independently show that, at least in the model systems studied here, there is no evidence for a preferential interaction between cholesterol and tryptophans located at the bilayer interface.
Journal of Physical Chemistry B | 2009
Francesco Scarpelli; Malte Drescher; Tania Rutters-Meijneke; Andrea Holt; Dirk T. S. Rijkers; J. Antoinette Killian; Martina Huber
The structure and function of membrane proteins is partly determined by the interaction of these proteins with the lipids of the membrane. Peptides forming single membrane-spanning alpha-helices, such as the WALP peptide (acetyl-GWWL(AL)(n)WWA-amide), are good models for such interactions. This interaction can be studied by investigating the aggregation of peptides. If the peptides remain isolated in the membrane, the peptide-lipid interaction dominates, if the peptides aggregate, the peptide-peptide interaction is stronger. The intrinsic dynamics and the disordered nature of the system require new approaches to determine eventual aggregation. We performed electron paramagnetic resonance (EPR) on spin-labeled WALP (SL-WALP) in the gel and the liquid-crystalline phases of two different phospholipids, the saturated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), and the unsaturated DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine). At low temperatures (120 K) where both lipids are in the gel phase, less extensive aggregation is observed for the peptide in DOPC as compared to DPPC. Together with previous data on aggregation of WALP peptides from atomic force microscopy and fluorescence spectroscopy at 294 K ( Sparr ; et al. Biochemistry 2005 , 44 , 2 -10 ), the results suggest that at 120 K WALP peptides form line aggregates in DOPC and cluster aggregates in DPPC. In the liquid-crystalline phase of both lipids, signatures of aggregation are absent, showing that in this phase the peptide can be accommodated by either lipid. It can be concluded that the lipid phase, in this case gel or liquid-crystalline, is a more important determinant for peptide aggregation than whether the lipid is saturated (DPPC) or unsaturated (DOPC). In view of the gel-phase-like behavior of some membrane phases in physiological systems the methodology should be relevant.
Journal of Molecular Biology | 2012
Alexander Kyrychenko; Mykola V. Rodnin; Yevgen O. Posokhov; Andrea Holt; Bernard Pucci; J. Antoinette Killian; Alexey S. Ladokhin
Accurate determination of the free energy of transfer of a helical segment from an aqueous into a transmembrane (TM) conformation is essential for understanding and predicting the folding and stability of membrane proteins. Until recently, direct thermodynamically sound measurements of free energy of insertion of hydrophobic TM peptides were impossible due to peptide aggregation outside the lipid bilayer. Here, we overcome this problem by using fluorinated surfactants that are capable of preventing aggregation but, unlike detergents, do not themselves interact with the bilayer. We have applied the fluorescence correlation spectroscopy methodology to study surfactant-chaperoned insertion into preformed POPC (palmitoyloleoylphosphatidylcholine) vesicles of the two well-studied dye-labeled TM peptides of different lengths: WALP23 and WALP27. Extrapolation of the apparent free-energy values measured in the presence of surfactants to a zero surfactant concentration yielded free-energy values of -9.0±0.1 and -10.0±0.1 kcal/mol for insertion of WALP23 and WALP27, respectively. Circular dichroism measurements confirmed helical structure of peptides in lipid bilayer, in the presence of surfactants, and in aqueous mixtures of organic solvents. From a combination of thermodynamic and conformational measurements, we conclude that the partitioning of a four-residue L-A-L-A segment in the context of a continuous helical conformation from an aqueous environment into the hydrocarbon core of the membrane has a favorable free energy of 1 kcal/mol. Our measurements, combined with the predictions of two independent experimental hydrophobicity scales, indicate that the per-residue cost of transfer of the helical backbone from water to the hydrocarbon core of the lipid bilayer is unfavorable and is equal to +2.13±0.17 kcal/mol.
Biophysical Journal | 2012
Alexander Kyrychenko; Mykola V. Rodnin; Yevgen O. Posokhov; Andrea Holt; Bernard Pucci; Antoinette Killian; Alexey S. Ladokhin