Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Kroeker is active.

Publication


Featured researches published by Andrea Kroeker.


American Journal of Respiratory Cell and Molecular Biology | 2011

The Mevalonate Cascade as a Target to Suppress Extracellular Matrix Synthesis by Human Airway Smooth Muscle

Dedmer Schaafsma; Gordon Dueck; Saeid Ghavami; Andrea Kroeker; Mark M. Mutawe; Kristin Hauff; Fred Y. Xu; Karol D. McNeill; Helmut Unruh; Grant M. Hatch; Andrew J. Halayko

Smooth muscle cells promote fibroproliferative airway remodeling in asthma, and transforming growth factor β1 (TGFβ1) is a key inductive signal. Statins are widely used to treat hyperlipidemia. Growing evidence indicates they also exert a positive impact on lung health, but the underlying mechanisms are unclear. We assessed the effects of 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase inhibition with simvastatin on the fibrotic function of primary cultured human airway smooth muscle cells. Simvastatin blocked de novo cholesterol synthesis, but total myocyte cholesterol content was unaffected. Simvastatin also abrogated TGFβ1-induced collagen I and fibronectin expression, and prevented collagen I secretion. The depletion of mevalonate cascade intermediates downstream from HMG-CoA underpinned the effects of simvastatin, because co-incubation with mevalonate, geranylgeranylpyrophosphate, or farnesylpyrophosphate prevented the inhibition of matrix protein expression. We also showed that human airway myocytes express both geranylgeranyl transferase 1 (GGT1) and farnesyltransferase (FT), and the inhibition of GGT1 (GGTI inhibitor-286, 10 μM), but not FT (FTI inhibitor-277, 10 μM), mirrored the suppressive effects of simvastatin on collagen I and fibronectin expression and collagen I secretion. Moreover, simvastatin and GGTI-286 both prevented TGFβ1-induced membrane association of RhoA, a downstream target of GGT1. Our findings suggest that simvastatin and GGTI-286 inhibit synthesis and secretion of extracellular matrix proteins by human airway smooth muscle cells by suppressing GGT1-mediated posttranslational modification of signaling molecules such as RhoA. These findings reveal mechanisms related to evidence for the positive impact of statins on pulmonary health.


Journal of Proteome Research | 2012

Response of primary human airway epithelial cells to influenza infection: a quantitative proteomic study.

Andrea Kroeker; Peyman Ezzati; Andrew J. Halayko; Kevin M. Coombs

Influenza A virus exerts a large health burden during both yearly epidemics and global pandemics. However, designing effective vaccine and treatment options has proven difficult since the virus evolves rapidly. Therefore, it may be beneficial to identify host proteins associated with viral infection and replication to establish potential new antiviral targets. We have previously measured host protein responses in continuously cultured A549 cells infected with mouse-adapted virus strain A/PR/8/34(H1N1; PR8). We here identify and measure host proteins differentially regulated in more relevant primary human bronchial airway epithelial (HBAE) cells. A total of 3740 cytosolic HBAE proteins were identified by 2D LC–MS/MS, of which 52 were up-regulated ≥2-fold and 41 were down-regulated ≥2-fold after PR8 infection. Up-regulated HBAE proteins clustered primarily into interferon signaling, other host defense processes, and molecular transport, whereas down-regulated proteins were associated with cell death signaling pathways, cell adhesion and motility, and lipid metabolism. Comparison to influenza-infected A549 cells indicated some common influenza-induced host cell alterations, including defense response, molecular transport proteins, and cell adhesion. However, HBAE-specific alterations consisted of interferon and cell death signaling. These data point to important differences between influenza replication in continuous and primary cell lines and/or alveolar and bronchial epithelial cells.


Cell Reports | 2016

Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site

Katie A. Howell; Xiangguo Qiu; Jennifer M. Brannan; Christopher Bryan; Edgar Davidson; Frederick W. Holtsberg; Anna Z. Wec; Sergey Shulenin; Julia E. Biggins; Robin Douglas; Sven Enterlein; Hannah L. Turner; Jesper Pallesen; Charles D. Murin; Shihua He; Andrea Kroeker; Hong Vu; Andrew S. Herbert; Marnie L. Fusco; Elisabeth K. Nyakatura; Jonathan R. Lai; Zhen Yong Keck; Steven K. H. Foung; Erica Ollmann Saphire; Larry Zeitlin; Andrew B. Ward; Kartik Chandran; Benjamin J. Doranz; Gary P. Kobinger; John M. Dye

Summary Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross-protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.


Science Translational Medicine | 2016

Two-mAb cocktail protects macaques against the Makona variant of Ebola virus.

Xiangguo Qiu; Jonathan Audet; Ming Lv; Shihua He; Gary Wong; Haiyan Wei; Longlong Luo; Lisa Fernando; Andrea Kroeker; Hugues Fausther Bovendo; Alexander Bello; Feng Li; Pei Ye; Michael Jacobs; Giuseppe Ippolito; Erica Ollmann Saphire; Shengli Bi; Beifen Shen; George F. Gao; Larry Zeitlin; Jiannan Feng; Boyan Zhang; Gary P. Kobinger

A two–monoclonal antibody cocktail protects nonhuman primates against Ebola virus 3 days after lethal exposure. One-two punch for Ebola Antibody cocktails are an appealing therapeutic option for emerging infections such as the recent Ebola virus outbreak in West Africa because of their scalability and specificity. Qiu et al. report that the antibody cocktail used in Ebola virus–infected patients can be further simplified to only two antibodies and that these antibodies can be produced in engineered Chinese hamster ovary cells. This cocktail protected nonhuman primates against the virus responsible for the 2014–2015 outbreak up to 3 days after exposure. Combining these antibodies with those specific for other strains may lead to a broad ebolavirus therapy. The 2014–2015 Ebola virus (EBOV) outbreak in West Africa highlighted the urgent need for specific therapeutic interventions for infected patients. The human-mouse chimeric monoclonal antibody (mAb) cocktail ZMapp, previously shown to be efficacious in EBOV (variant Kikwit) lethally infected nonhuman primates (NHPs) when administration was initiated up to 5 days, was used in some patients during the outbreak. We show that a two-antibody cocktail, MIL77E, is fully protective in NHPs when administered at 50 mg/kg 3 days after challenge with a lethal dose of EBOV variant Makona, the virus responsible for the ongoing 2014–2015 outbreak, whereas a similar formulation of ZMapp protected two of three NHPs. The chimeric MIL77E mAb cocktail is produced in engineered Chinese hamster ovary cells and is based on mAbs c13C6 and c2G4 from ZMapp. The use of only two antibodies in MIL77E opens the door to a pan-ebolavirus cocktail.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Suppression of influenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1

Behzad Yeganeh; Saeid Ghavami; Andrea Kroeker; Thomas H. Mahood; Gerald L. Stelmack; Thomas Klonisch; Kevin M. Coombs; Andrew J. Halayko

Subcellular trafficking within host cells plays a critical role in viral life cycles, including influenza A virus (IAV). Thus targeting relevant subcellular compartments holds promise for effective intervention to control the impact of influenza infection. Bafilomycin A1 (Baf-A1), when used at relative high concentrations (≥10 nM), inhibits vacuolar ATPase (V-ATPase) and reduces endosome acidification and lysosome number, thus inhibiting IAV replication but promoting host cell cytotoxicity. We tested the hypothesis that much lower doses of Baf-A1 also have anti-IAV activity, but without toxic effects. Thus we assessed the antiviral activity of Baf-A1 at different concentrations (0.1-100 nM) in human alveolar epithelial cells (A549) infected with IAV strain A/PR/8/34 virus (H1N1). Infected and mock-infected cells pre- and cotreated with Baf-A1 were harvested 0-24 h postinfection and analyzed by immunoblotting, immunofluorescence, and confocal and electron microscopy. We found that Baf-A1 had disparate concentration-dependent effects on subcellular organelles and suppressed affected IAV replication. At concentrations ≥10 nM Baf-A1 inhibited acid lysosome formation, which resulted in greatly reduced IAV replication and release. Notably, at a very low concentration of 0.1 nM that is insufficient to reduce lysosome number, Baf-A1 retained the capacity to significantly impair IAV nuclear accumulation as well as IAV replication and release. In contrast to the effects of high concentrations of Baf-A1, very low concentrations did not exhibit cytotoxic effects or induce apoptotic cell death, based on morphological and FACS analyses. In conclusion, our results reveal that low-concentration Baf-A1 is an effective inhibitor of IAV replication, without impacting host cell viability.


Journal of Virology | 2016

Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease

Robert Kozak; Shihua He; Andrea Kroeker; Marc-Antoine de La Vega; Jonathan Audet; Gary Wong; Chantel Urfano; Kym S. Antonation; Carissa Embury-Hyatt; Gary P. Kobinger; Xiangguo Qiu

ABSTRACT Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales. To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. IMPORTANCE The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is crucial to evaluating vaccines and therapies and potentially understanding transmission. To address this, we demonstrated that ferrets are susceptible models to BDBV infection as well as to Ebola virus infection and that no virus adaptation is required. Moreover, these animals develop a disease that is similar to that seen in humans and nonhuman primates. We believe that this will improve the ability to study BDBV and provide a platform to test vaccines and therapeutics.


Scientific Reports | 2016

Potent neutralizing monoclonal antibodies against Ebola virus infection

Qi Zhang; Miao Gui; Xuefeng Niu; Shihua He; Ruoke Wang; Yupeng Feng; Andrea Kroeker; Yanan Zuo; Hua Wang; Ying Wang; Jiade Li; Chufang Li; Yi Shi; Xuanling Shi; George F. Gao; Ye Xiang; Xiangguo Qiu; Ling Chen; Linqi Zhang

Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection.


Journal of Virology | 2016

Development and Characterization of a Guinea Pig-Adapted Sudan Virus

Gary Wong; Shihua He; Haiyan Wei; Andrea Kroeker; Jonathan Audet; Anders Leung; Todd Cutts; Jill Graham; Darwyn Kobasa; Carissa Embury-Hyatt; Gary P. Kobinger; Xiangguo Qiu

ABSTRACT Infections with Sudan virus (SUDV), a member of the genus Ebolavirus, result in a severe hemorrhagic fever with a fatal outcome in over 50% of human cases. The paucity of prophylactics and therapeutics against SUDV is attributed to the lack of a small-animal model to screen promising compounds. By repeatedly passaging SUDV within the livers and spleens of guinea pigs in vivo, a guinea pig-adapted SUDV variant (SUDV-GA) uniformly lethal to these animals, with a 50% lethal dose (LD50) of 5.3 × 10−2 50% tissue culture infective doses (TCID50), was developed. Animals infected with SUDV-GA developed high viremia and died between 9 and 14 days postinfection. Several hallmarks of SUDV infection, including lymphadenopathy, increased liver enzyme activities, and coagulation abnormalities, were observed. Virological analyses and gross pathology, histopathology, and immunohistochemistry findings indicate that SUDV-GA replicates in the livers and spleens of infected animals similarly to SUDV infections in nonhuman primates. These developments will accelerate the development of specific medical countermeasures in preparation for a future disease outbreak due to SUDV. IMPORTANCE A disease outbreak due to Ebola virus (EBOV), suspected to have emerged during December 2013 in Guinea, with over 11,000 dead and 28,000 infected, is finally winding down. Experimental EBOV vaccines and treatments were administered to patients under compassionate circumstances with promising results, and availability of an approved countermeasure appears to be close. However, the same range of experimental candidates against a potential disease outbreak caused by other members of the genus Ebolavirus, such as Sudan virus (SUDV), is not readily available. One bottleneck contributing to this situation is the lack of a small-animal model to screen promising drugs in an efficient and economical manner. To address this, we have generated a SUDV variant (SUDV-GA) that is uniformly lethal to guinea pigs. Animals infected with SUDV-GA develop disease similar to that of SUDV-infected humans and monkeys. We believe that this model will significantly accelerate the development of life-saving measures against SUDV infections.


Journal of Proteome Research | 2013

Influenza A infection of primary human airway epithelial cells up-regulates proteins related to purine metabolism and ubiquitin-related signaling.

Andrea Kroeker; Peyman Ezzati; Kevin M. Coombs; Andrew J. Halayko

Virus-host interactions are important determinants of virus replication and immune responses, but they are not well-defined. In this study we analyzed quantitative host protein alterations in nuclei-enriched fractions from multiple primary human bronchial airway epithelial (HBAE) cells infected by an H1N1 influenza A virus (A/PR/8/34). We first developed an effective detergent-free nuclear lysis method that was coupled with in-solution digestion and LC-MS/MS. Using SILAC, we identified 837 HBAE nuclear proteins in three different donors and compared their responses to infection at 24 h. Some proteins were altered in all three donors, of which 94 were up-regulated and 13 were down-regulated by at least 1.5-fold. Many of these up-regulated proteins clustered into purine biosynthesis, carbohydrate metabolism, and protein modification. Down-regulated proteins were not associated with any specific pathways or processes. These findings further our understanding of cellular processes that are altered in response to influenza in primary epithelial cells and may be beneficial in the search for host proteins that may be targeted for antiviral therapy.


Antimicrobial Agents and Chemotherapy | 2016

Prophylactic Efficacy of Quercetin 3-β-O-d-Glucoside against Ebola Virus Infection

Xiangguo Qiu; Andrea Kroeker; Shihua He; Robert Kozak; Jonathan Audet; Majambu Mbikay; Michel Chrétien

ABSTRACT Ebola outbreaks occur on a frequent basis, with the 2014-2015 outbreak in West Africa being the largest one ever recorded. This outbreak has resulted in over 11,000 deaths in four African countries and has received international attention and intervention. Although there are currently no approved therapies or vaccines, many promising candidates are undergoing clinical trials, and several have had success in promoting recovery from Ebola. However, these prophylactics and therapeutics have been designed and tested only against the same species of Ebola virus as the one causing the current outbreak. Future outbreaks involving other species would require reformulation and possibly redevelopment. Therefore, a broad-spectrum alternative is highly desirable. We have found that a flavonoid derivative called quercetin 3-β-O-d-glucoside (Q3G) has the ability to protect mice from Ebola even when given as little as 30 min prior to infection. Furthermore, we have demonstrated that this compound targets the early steps of viral entry. Most promisingly, antiviral activity against two distinct species of Ebola virus was seen. This study serves as a proof of principle that Q3G has potential as a prophylactic against Ebola virus infection.

Collaboration


Dive into the Andrea Kroeker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shihua He

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Wong

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Carissa Embury-Hyatt

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa Fernando

Public Health Agency of Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge