Andrea Kwakowsky
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Kwakowsky.
The Journal of Neuroscience | 2012
Andrea Kwakowsky; Allan E. Herbison; István M. Ábrahám
The mechanisms through which estradiol (E2) regulates gonadotropin-releasing hormone (GnRH) neurons to control fertility are unclear. Previous studies have demonstrated that E2 rapidly phosphorylates cAMP response element-binding protein (CREB) in GnRH neurons in vivo. In the present study, we used GnRH neuron-specific CREB-deleted mutant mice [GnRH-CREB knock-outs (KOs)] with and without global cAMP response element modulator (CREM) deletion (global-CREM KOs) to investigate the role of CREB in estrogen negative feedback on GnRH neurons. Evaluation of GnRH-CREB KO mice with and without global CREM deletion revealed normal puberty onset. Although estrus cycle length in adults was the same in controls and knock-out mice, cycles in mutant mice consisted of significantly longer periods of diestrus and less estrus. In GnRH-CREB KO mice, basal levels of luteinizing hormone (LH) and the postovariectomy increment in LH were normal, but the ability of E2 to rapidly suppress LH was significantly blunted. In contrast, basal and postovariectomy LH levels were abnormal in GnRH-CREB KO/global-CREM KO mice. Fecundity studies showed that GnRH-CREB KO with and without global CREM deletion were normal up to ∼9 months of age, at which time they became prematurely reproductively senescent. Morphological analysis of GnRH neurons revealed a significant reduction (p < 0.01) in GnRH somatic spine density of GnRH-CREB KO mice compared to control females. These observations implicate CREB within the GnRH neuron as an important target for E2s negative feedback actions. They also indicate that the rapid modulation of CREB by E2 is of physiological significance in the CNS.
Endocrinology | 2012
Rachel Y. Cheong; Andrea Kwakowsky; Zsuzsanna Barad; Robert Porteous; Allan E. Herbison; István M. Ábrahám
Rapid, nonclassical 17β-estradiol (E2) actions are thought to play an important role in the modulation of neuronal function. The present study addresses the intracellular signaling cascades involved in the rapid E2-induced phosphorylation of cAMP response element binding protein (CREB) in GnRH neurons. Administration of E2 to adult female mice resulted in the activation of ERK1/2 in GnRH neurons within 15 min. In vitro studies using pharmacological antagonists showed that ERK1/2 was essential for E2-induced CREB phosphorylation in GnRH neurons. Upstream to this, protein kinase A and calcium/calmodulin-dependent protein kinase type II, but not protein kinase C, were found to be necessary for E2-induced phosphorylation of ERK1/2. This rapid E2 signaling cascade in GnRH neurons was found to require both direct and indirect E2 actions. E2 failed to phosphorylate ERK1/2 and CREB in GnRH neuron-specific estrogen receptor β knockout mice in vivo. Equally, however, a cocktail of tetrodotoxin and γ-aminobutyric acid(A)/glutamate receptor antagonists also blocked E2-induced ERK1/2 phosphorylation in GnRH neurons in wild-type mice in vitro. Together, these observations indicate that E2 acts through calcium/calmodulin-dependent protein kinase type II and protein kinase A to rapidly phosphorylate ERK1/2, which then acts to phosphorylate CREB in adult female GnRH neurons. Intriguingly, these effects of E2 are dependent upon both direct ERβ mechanisms as well as indirect actions mediated by afferent inputs to GnRH neurons.
Frontiers in Neuroendocrinology | 2014
Andrea Kwakowsky; Rachel Y. Cheong; Allan E. Herbison; István M. Ábrahám
Gonadotropin-releasing hormone (GnRH) is produced by a heterogenous neuronal population in the hypothalamus to control pituitary gonadotropin production and reproductive function in all mammalian species. Estradiol is a critical component for the communication between the gonads and the central nervous system. Resolving the mechanisms by which estradiol modulates GnRH neurons is critical for the understanding of how fertility is regulated. Extensive studies during the past decades have provided compelling evidence that estradiol has the potential to alter the intracellular signal transduction mechanisms. The common target of many signaling pathways is the phosphorylation of a key transcription factor, the cAMP response element binding protein (CREB). This review first addresses the aspects of estradiol action on CREB phosphorylation (pCREB) in GnRH neurons. Secondly, this review considers the receptors and signaling network that regulates estradiols action on pCREB within GnRH neurons and finally it summarizes the physiological significance of CREB to estrogen feedback.
Endocrinology | 2015
Michael R. Milne; Christopher A. Haug; István M. Ábrahám; Andrea Kwakowsky
The neuroprotective effect of estradiol (E2) on basal forebrain cholinergic neurons (BFCNs) has been suggested to occur as a result of E2 modulation of the neurotrophin system on these neurons. The present study provides a comprehensive examination of the relationship between E2 and neurotrophin signaling on BFCNs by investigating the effect of E2 deficiency on the expression levels of neurotrophin receptors (NRs), TrkA, TrkB, and p75 on BFCNs. The number of TrkA receptor-expressing choline acetyltransferase-positive neurons was significantly reduced in the medial septum (MS) in the absence of E2. A significant reduction in TrkB-expressing choline acetyltransferase-positive cells was also observed in ovariectomized mice in the MS and nucleus basalis magnocellularis (NBM). p75 receptor expression was reduced in the NBM and striatum but not in the MS. We also showed that estrogen receptor (ER)-α was expressed by a small percentage of TrkA- and TrkB-positive neurons in the MS (12%) and NBM (19%) and by a high percentage of TrkB-positive neurons in the striatum (69%). Similarly, ERα was expressed at low levels by p75 neurons in the MS (6%) and NBM (9%) but was not expressed on striatal neurons. Finally, ERα knockout using neuron-specific estrogen receptor-α knockout transgenic mice abolished all E2-mediated changes in the NR expression on BFCNs. These results indicate that E2 differentially regulates NR expression on BFCNs, with effects depending on the NR type and neuroanatomical location, and also provide some evidence that alterations in the NR expression are, at least in part, mediated via ERα.
Neuroscience | 2017
Tessa E. Fuhrer; Thulani H. Palpagama; Henry J. Waldvogel; Beth J. Synek; Clinton Turner; Richard L.M. Faull; Andrea Kwakowsky
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimers disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus. We found a significant increase in BGT-1 expression associated with AD in all layers of the dentate gyrus, in the stratum oriens of the CA2 and CA3 and the superior temporal gyrus. In AD there was a significant decrease in GAT-1 expression in the entorhinal cortex and superior temporal gyrus. We also found a significant decrease in GAT-3 immunoreactivity in the stratum pyramidale of the CA1 and CA3, the subiculum and entorhinal cortex. These observations indicate that the expression of the GATs shows brain-region- and layer-specific alterations in AD, suggesting a complex activation pattern of different GATs during the course of the disease.
International Journal of Molecular Sciences | 2017
Karan Govindpani; Beatriz Calvo-Flores Guzmán; Chitra Vinnakota; Henry J. Waldvogel; Richard L.M. Faull; Andrea Kwakowsky
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.
Scientific Reports | 2016
Andrea Kwakowsky; Kyoko Potapov; Soo Hyun Kim; Katie Peppercorn; Warren P. Tate; István M. Ábrahám
In Alzheimer’s disease (AD), there is a loss in cholinergic innervation targets of basal forebrain which has been implicated in substantial cognitive decline. Amyloid beta peptide (Aβ1–42) accumulates in AD that is highly toxic for basal forebrain cholinergic (BFC) neurons. Although the gonadal steroid estradiol is neuroprotective, the administration is associated with risk of off-target effects. Previous findings suggested that non-classical estradiol action on intracellular signaling pathways has ameliorative potential without estrogenic side effects. After Aβ1–42 injection into mouse basal forebrain, a single dose of 4-estren-3α, 17β-diol (estren), the non-classical estradiol pathway activator, restored loss of cholinergic cortical projections and also attenuated the Aβ1–42-induced learning deficits. Estren rapidly and directly phosphorylates c-AMP-response–element-binding-protein and extracellular-signal-regulated-kinase-1/2 in BFC neurons and restores the cholinergic fibers via estrogen receptor-α. These findings indicated that selective activation of non-classical intracellular estrogen signaling has a potential to treat the damage of cholinergic neurons in AD.
Cell Calcium | 2011
Marija Schwirtlich; Andrea Kwakowsky; Zsuzsa Emri; Károly Antal; Zsombor Lacza; Attila Cselenyák; Zoya Katarova; Gábor Szabó
Primary lens epithelial cell (LEC) cultures derived from newborn (P0) and one-month-old (P30) mouse lenses were used to study GABA (gamma-aminobutyric acid) signaling expression and its effect on the intracellular Ca2+ ([Ca2+]i) level. We have found that these cultures express specific cellular markers for lens epithelial and fiber cells, all components of the functional GABA signaling pathway and GABA, thus recapitulating the developmental program of the ocular lens. Activation of both GABA-A and GABA-B receptors (GABAAR and GABABR) with the specific agonists muscimol and baclofen, respectively induces [Ca2+]i transients that could be blocked by the specific antagonists bicuculline and CGP55845 and were dependent on extracellular Ca2+. Bicuculline did not change the GABA-evoked Ca2+ responses in Ca2-containing buffers, but suppressed them significantly in Ca2+-free buffers suggesting the two receptors couple to convergent Ca2+ mobilization mechanisms with different extracellular Ca2+ sensitivity. Prolonged activation of GABABR induced wave propagation of the Ca2+ signal and persistent oscillations. The number of cells reacting to GABA or GABA+bicuculline in P30 mouse LEC cultures expressing predominantly the synaptic type GABAAR did not differ significantly from the number of reacting cells in P0 mouse LEC cultures. The GABA-induced Ca2+ transients in P30 (but not P0) mouse LEC could be entirely suppressed by co-application of bicuculline and CGP55845. The GABA-mediated Ca2+ signaling may be involved in a variety of Ca2+-dependent cellular processes during lens growth and epithelial cell differentiation.
Journal of Neurochemistry | 2018
Beatriz Calvo-Flores Guzmán; Chitra Vinnakota; Karan Govindpani; Henry J. Waldvogel; Richard L. M. Faull; Andrea Kwakowsky
Glutamatergic and cholinergic dysfunction are well‐attested features of Alzheimers disease (AD), progressing with other pathological indices of the disorder and exacerbating neuronal and network dysfunction. However, relatively little attention has been paid to the inhibitory component of the excitatory/inhibitory (E/I) network, particularly dysfunction in the gamma‐aminobutyric acid (GABA) signaling system. There is growing evidence in support of GABAergic remodeling in the AD brain, potentially beginning in early stages of disease pathogenesis, and this could thus be a valid molecular target for drug development and pharmacological therapies. Several GABAergic drugs have been tested for efficacy in attenuating or reversing various features and symptoms of AD, and this could represent a novel path by which we might address the growing need for more effective and benign therapies.
International Journal of Molecular Sciences | 2016
Andrea Kwakowsky; Michael R. Milne; Henry J. Waldvogel; Richard L.M. Faull
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease.