Andrea Lisco
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Lisco.
PLOS Pathogens | 2009
Jean K. Lim; Andrea Lisco; David H. McDermott; Linda Huynh; Jerrold M. Ward; Bernard Johnson; Hope Johnson; John Pape; Gregory A. Foster; David E. Krysztof; Dean Follmann; Susan L. Stramer; Leonid Margolis; Philip M. Murphy
West Nile virus (WNV) is a re-emerging pathogen that can cause fatal encephalitis. In mice, susceptibility to WNV has been reported to result from a single point mutation in oas1b, which encodes 2′–5′ oligoadenylate synthetase 1b, a member of the type I interferon-regulated OAS gene family involved in viral RNA degradation. In man, the human ortholog of oas1b appears to be OAS1. The ‘A’ allele at SNP rs10774671 of OAS1 has previously been shown to alter splicing of OAS1 and to be associated with reduced OAS activity in PBMCs. Here we show that the frequency of this hypofunctional allele is increased in both symptomatic and asymptomatic WNV seroconverters (Caucasians from five US centers; total n = 501; OR = 1.6 [95% CI 1.2–2.0], P = 0.0002 in a recessive genetic model). We then directly tested the effect of this SNP on viral replication in a novel ex vivo model of WNV infection in primary human lymphoid tissue. Virus accumulation varied markedly among donors, and was highest for individuals homozygous for the ‘A’ allele (P<0.0001). Together, these data identify OAS1 SNP rs10774671 as a host genetic risk factor for initial infection with WNV in humans.
Cell Host & Microbe | 2008
Andrea Lisco; Christophe Vanpouille; Egor P. Tchesnokov; Jean-Charles Grivel; Angélique Biancotto; Beda Brichacek; Julie Elliott; Emilie Fromentin; Robert Shattock; Peter A. Anton; Robert J. Gorelick; Jan Balzarini; Christopher McGuigan; Marco Derudas; Matthias Götte; Raymond F. Schinazi; Leonid Margolis
For most viruses, there is a need for antimicrobials that target unique viral molecular properties. Acyclovir (ACV) is one such drug. It is activated into a human herpesvirus (HHV) DNA polymerase inhibitor exclusively by HHV kinases and, thus, does not suppress other viruses. Here, we show that ACV suppresses HIV-1 in HHV-coinfected human tissues, but not in HHV-free tissue or cell cultures. However, addition of HHV-6-infected cells renders these cultures sensitive to anti-HIV ACV activity. We hypothesized that such HIV suppression requires ACV phosphorylation by HHV kinases. Indeed, an ACV monophosphorylated prodrug bypasses the HHV requirement for HIV suppression. Furthermore, phosphorylated ACV directly inhibits HIV-1 reverse transcriptase (RT), terminating DNA chain elongation, and can trap RT at the termination site. These data suggest that ACV anti-HIV-1 activity may contribute to the response of HIV/HHV-coinfected patients to ACV treatment and could guide strategies for the development of new HIV-1 RT inhibitors.
The Journal of Infectious Diseases | 2010
Jean K. Lim; David H. McDermott; Andrea Lisco; Gregory A. Foster; David E. Krysztof; Dean Follmann; Susan L. Stramer; Philip M. Murphy
BACKGROUND West Nile virus (WNV) is a neurotropic flavivirus transmitted to humans by mosquito vectors. Homozygosity for CCR5Delta32, a complete loss-of-function mutation in CC chemokine receptor 5 (CCR5), has been previously associated with severe symptomatic WNV infection in patients who present with clinical disease; however, whether it acts at the level of initial infection or in promoting clinical progression is unknown. METHODS Here, we address this gap in knowledge by comparing CCR5Delta32 distribution among US blood donors identified through a comprehensive blood supply screening program (34,766,863 donations from 2003 through 2008) as either WNV true positive (634 WNV-positive cases) or false positive (422 WNV-negative control participants). All subjects self-reported symptoms occurring during the 2 weeks following blood donation using a standardized questionnaire. RESULTS No difference was observed in CCR5Delta32 homozygous frequency between the WNV-positive cases and WNV-negative control participants. However, CCR5Delta32 homozygosity was associated in cases but not controls with clinical symptoms consistent with WNV infection (P = .002). CONCLUSIONS CCR5 deficiency is not a risk factor for WNV infection per se, but it is a risk factor for both early and late clinical manifestations after infection. Thus, CCR5 may function normally to limit disease due to WNV infection in humans.
Mucosal Immunology | 2010
Elisa Saba; Jean-Charles Grivel; Christophe Vanpouille; Beda Brichacek; Wendy Fitzgerald; Leonid Margolis; Andrea Lisco
Infection and dissemination of human immunodeficiency virus (HIV)-1 through the female body after vaginal intercourse depends on the activation/differentiation status of mucosal CD4 T cells. In this study, we investigated this status and the susceptibility to HIV-1 infection of human cervico-vaginal tissue ex vivo. We found that virtually all T cells are of the effector memory phenotype with broad CC chemokine receptor 5 (CCR5) expression. As it does in vivo, human cervico-vaginal tissue ex vivo preferentially supports the productive infection of R5 HIV-1 rather than that of X4 HIV-1 in spite of the broad expression of CXC chemokine receptor 4 (CXCR4). X4 HIV-1 replicated only in the few tissues that were enriched in CD27+CD28+ effector memory CD4 T cells. Productive infection of R5 HIV-1 occurred preferentially in activated CD38+CD4 T cells and was followed by a similar activation of HIV-1-uninfected (bystander) CD4 T cells that may amplify viral infection. These results provide new insights into the dependence of HIV-1 infection and dissemination on the activation/differentiation of cervico-vaginal lymphocytes.
Cell Host & Microbe | 2011
Graciela Andrei; Andrea Lisco; Christophe Vanpouille; Andrea Introini; Emanuela Balestra; Joost van den Oord; Tomas Cihlar; Carlo Federico Perno; Robert Snoeck; Leonid Margolis; Jan Balzarini
The HIV reverse-transcriptase inhibitor, tenofovir, was recently formulated into a vaginal gel for use as a microbicide. In human trials, a 1% tenofovir gel inhibited HIV sexual transmission by 39% and, surprisingly, herpes simplex virus-2 (HSV-2) transmission by 51%. We demonstrate that the concentration achieved intravaginally with a 1% tenofovir topical gel has direct antiherpetic activity. Tenofovir inhibits the replication of HSV clinical isolates in human embryonic fibroblasts, keratinocytes, and organotypic epithelial 3D rafts, decreases HSV replication in human lymphoid and cervicovaginal tissues ex vivo, and delays HSV-induced lesions and death in topically treated HSV-infected mice. The active tenofovir metabolite inhibits HSV DNA-polymerase and HIV reverse-transcriptase. To exert dual antiviral effects, tenofovir requires topical administration to achieve a drug concentration higher than systemic levels achieved by oral treatment. These findings indicate that a single topical treatment, like tenofovir, can inhibit the transmission of HIV and its copathogens.
Journal of Virology | 2007
Andrea Lisco; Jean-Charles Grivel; Angélique Biancotto; Christophe Vanpouille; Francesco Origgi; Mauro S. Malnati; Dominique Schols; Paolo Lusso; Leonid Margolis
ABSTRACT Human immunodeficiency virus (HIV) infection is often accompanied by infection with other pathogens that affect the clinical course of HIV disease. Here, we identified another virus, human herpesvirus 7 (HHV-7) that interferes with HIV type 1 (HIV-1) replication in human lymphoid tissue, where critical events of HIV disease occur. Like the closely related HHV-6, HHV-7 suppresses the replication of CCR5-tropic (R5) HIV-1 in coinfected blocks of human lymphoid tissue. Unlike HHV-6, which affects HIV-1 by upregulating RANTES, HHV-7 did not upregulate any CCR5-binding chemokine. Rather, the inhibition of R5 HIV-1 by HHV-7 was associated with a marked downregulation of CD4, the cellular receptor shared by HHV-7 and HIV-1. HHV-7-induced CD4 downregulation was sufficient for HIV-1 inhibition, since comparable downregulation of CD4 with cyclotriazadisulfonamide, a synthetic macrocycle that specifically modulates expression of CD4, resulted in the suppression of HIV infection similar to that seen in HHV-7-infected tissues. In contrast to R5 HIV-1, CXCR4-tropic (X4) HIV-1 was only minimally suppressed by HHV-7 coinfection. This selectivity in suppression of R5 and X4 HIV-1 is explained by a suppression of HHV-7 replication in X4- but not in R5-coinfected tissues. These results suggest that HIV-1 and HHV-7 may interfere in lymphoid tissue in vivo, thus potentially affecting the progression of HIV-1 disease. Knowledge of the mechanisms of interaction of HIV-1 with HHV-7, as well as with other pathogens that modulate HIV-1 replication, may provide new insights into HIV pathogenesis and lead to the development of new anti-HIV therapeutic strategies.
AIDS | 2007
Jean-Charles Grivel; Julie Elliott; Andrea Lisco; Ang lique Biancotto; Cristian E. Condack; Robin J. Shattock; Ian McGowan; Leonid Margolis; Peter A. Anton
Gut-associated lymphoid tissue (GALT) has been identified as the primary target of HIV-1 infection. To investigate why GALT is especially vulnerable to HIV-1, and to determine whether the selective transmission of CCR5-using viral variants (R5) in vivo is the result of a greater susceptibility of GALT to this viral variant, we performed comparative studies of CXCR4-using (X4) and R5 HIV-1 infections of human lymphoid (tonsillar) and rectosigmoid tissues ex vivo under controlled laboratory conditions. We found that the relative level of R5 replication in rectosigmoid tissue is much greater than in tonsillar tissue. This difference is associated with the expression of the CCR5 co-receptor on approximately 70% of CD4 T cells in rectosigmoid tissue, whereas in tonsillar tissue it is expressed on fewer than 15% of CD4 T cells. Furthermore, tonsillar tissue responds to X4 HIV-1 infection by upregulating the secretion of CC-chemokines, providing a potential CCR5 blockade and further resistance to R5 infection, whereas gut tissue failed to increase such innate immune responses. Our results show that rectosigmoid tissue is more prone than tonsillar lymphoid tissue to R5 HIV-1 infection, primarily because of the high prevalence and availability of R5 cell targets and reduced chemokine blockade. The majority of CD4 T cells express CXCR4, however, and X4 HIV-1 readily replicates in both tissues, suggesting that although the differential expression of co-receptors contributes to the GALT vulnerability to R5 HIV-1, it alone cannot account for the selective R5 infection of the rectal mucosa in vivo.
Journal of Medicinal Chemistry | 2009
Marco Derudas; Davide Carta; Andrea Brancale; Christophe Vanpouille; Andrea Lisco; Leonid Margolis; Jan Balzarini; Christopher McGuigan
Recently, it has been reported that phosphorylated acyclovir (ACV) inhibits human immunodeficiency virus type 1 (HIV-1) reverse transcriptase in a cell-free system. To deliver phosphorylated ACV inside cells, we designed ACV monophosphorylated derivatives using ProTide technology. We found that the L-alanine derived ProTides show anti-HIV activity at noncytotoxic concentrations; ester and aryl variation was tolerated. ACV ProTides with other amino acids, other than L-phenylalanine, showed no detectable activity against HIV in cell culture. The inhibitory activity of the prodrugs against herpes simplex virus (HSV) types -1 and -2 and thymidine kinase-deficient HSV-1 revealed different structure-activity relationships but was again consistent with successful nucleoside kinase bypass. Enzymatic and molecular modeling studies have been performed in order to better understand the antiviral behavior of these compounds. ProTides showing diminished carboxypeptidase lability translated to poor anti-HIV agents and vice versa, so the assay became predictive.
The Journal of Infectious Diseases | 2012
Andrea Lisco; Arshi Munawwar; Andrea Introini; Christophe Vanpouille; Elisa Saba; Xingmin Feng; Jean-Charles Grivel; Sarman Singh; Leonid Margolis
BACKGROUND Semen is the main carrier of sexually transmitted viruses, including human immunodeficiency virus type 1 (HIV-1). However, semen is not just a mere passive transporter of virions but also plays an active role in HIV-1 transmission through cytokines and other biological factors. METHODS To study the relationship between viruses and the chemokine-cytokine network in the male genital tract, we measured the concentrations of 21 cytokines/chemokines and the loads of HIV-1 and of 6 herpesviruses in seminal and blood plasma from HIV-1-infected and HIV-uninfected men. RESULTS We found that (1) semen is enriched in cytokines and chemokines that play key roles in HIV-1 infection or transmission; (2) HIV-1 infection changes the chemokine-cytokine network in semen, further enriching it in cytokines that modulate its replication; (3) HIV-1 infection is associated with Epstein-Barr virus (EBV) and cytomegalovirus (CMV) compartmentalized seminal reactivation; (4) CMV and EBV concomitant seminal shedding is associated with higher HIV-1 loads in blood and seminal plasma; and (5) CMV seminal reactivation increases the seminal levels of the CCR5 ligands RANTES and eotaxin, and of the CXCR3 ligand monokine induced by gamma interferon (MIG). CONCLUSIONS HIV-1 infection results in an aberrant production of cytokines and reactivation of EBV and CMV that further changes the seminal cytokine network. The altered seminal milieu in HIV-1 infection may be a determinant of HIV-1 sexual transmission.
Journal of Virological Methods | 2009
Angélique Biancotto; Beda Brichacek; Silvia Chen; Wendy Fitzgerald; Andrea Lisco; Christophe Vanpouille; Leonid Margolis; Jean-Charles Grivel
Nucleic acid measurements are used to follow HIV-1 viral load in clinical applications while p24 ELISA is commonly used to monitor HIV-1 replication in research settings. Current ELISA assays are expensive and offer a narrow dynamic measurement range. This report describes a simple, sensitive and inexpensive bead-based assay offering a wide dynamic measurement range. This cytometric bead assay allows the detection of p24 concentrations over 4 orders of magnitude from less than 0.4pg to up to 20,000pgml(-1) in a volume of 50microl and can be combined with other measurements.