Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonid Margolis is active.

Publication


Featured researches published by Leonid Margolis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin

Jeanne Kwik; Sarah Boyle; David Robert Fooksman; Leonid Margolis; Michael P. Sheetz; Michael Edidin

Responses to cholesterol depletion are often taken as evidence of a role for lipid rafts in cell function. Here, we show that depletion of cell cholesterol has global effects on cell and plasma membrane architecture and function. The lateral mobility of membrane proteins is reduced when cell cholesterol is chronically or acutely depleted. The change in mobility is a consequence of the reorganization of the cell actin. Binding of a GFP-tagged pleckstrin homology domain specific for phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to the plasma membrane is reduced after cholesterol depletion. This result implies that the reorganization of cytoskeleton depends on the loss or redistribution of plasma membrane PI(4,5)P2. Consistent with this observation, agents that sequester plasma membrane PI(4,5)P2 mimic the effects of cholesterol depletion on actin organization and on lateral mobility.


Cell | 2007

Semen-Derived Amyloid Fibrils Drastically Enhance HIV Infection

Jan Münch; Elke Rücker; Ludger Ständker; Knut Adermann; Christine Goffinet; Michael Schindler; Steffen Wildum; Raghavan Chinnadurai; Devi Rajan; Anke Specht; Guillermo Giménez-Gallego; Pedro Cuevas Sánchez; Douglas M. Fowler; Atanas V. Koulov; Jeffery W. Kelly; Walther Mothes; Jean-Charles Grivel; Leonid Margolis; Oliver T. Keppler; Wolf Georg Forssmann; Frank Kirchhoff

Sexual intercourse is the major route of HIV transmission. To identify endogenous factors that affect the efficiency of sexual viral transmission, we screened a complex peptide/protein library derived from human semen. We show that naturally occurring fragments of the abundant semen marker prostatic acidic phosphatase (PAP) form amyloid fibrils. These fibrils, termed Semen-derived Enhancer of Virus Infection (SEVI), capture HIV virions and promote their attachment to target cells, thereby enhancing the infectious virus titer by several orders of magnitude. Physiological concentrations of SEVI amplified HIV infection of T cells, macrophages, ex vivo human tonsillar tissues, and transgenic rats in vivo, as well as trans-HIV infection of T cells by dendritic or epithelial cells. Amyloidogenic PAP fragments are abundant in seminal fluid and boost semen-mediated enhancement of HIV infection. Thus, they may play an important role in sexual transmission of HIV and could represent new targets for its prevention.


Nature Medicine | 1999

CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue

Jean-Charles Grivel; Leonid Margolis

A rapid decline in T-cell counts and the progression to AIDS is often associated with a switch from CCR5-tropic (R5) HIV-1 to CXCR4–tropic (X4) HIV-1 or R5/X4 HIV-1 variants. Experimental infection with R5 HIV-1 causes less T-cell depletion than infection with X4 or R5/X4 variants in T-cell cultures, in ex vivo infected human lymphoid tissue and in SCID/hu mice, despite similar replication levels. Experimental genetic changes in those sequences in gp120 that transform R5 HIV-1 variants into otherwise isogenic X4 viruses make them highly cytopathic. Thus, it is now believed that R5 variants are less cytopathic for T cells than are X4 variants. However, it is not known why CCR5-mediated HIV-1 infection does not lead to a massive CD4+ T-cell depletion, as occurs in CXCR4-mediated HIV-1 infection. Here we demonstrate that R5 HIV-1 isolates are indeed highly cytopathic, but only for CCR5+/CD4+ T cells. Because these cells constitute only a small fraction of CD4+ T cells, their depletion does not substantially change the total CD4+ T-cell count. These results may explain why the clinical stage of HIV disease correlates with viral tropism.


Biophysical Journal | 1998

Domains in Cell Plasma Membranes Investigated by Near-Field Scanning Optical Microscopy

Jeeseong Hwang; Levi A. Gheber; Leonid Margolis; Michael Edidin

Near-field scanning optical microscopy (NSOM) uses the near-field interaction of light from a sharp fiber-optic probe with a sample of interest to image surfaces at a resolution beyond the diffraction limit of conventional optics. We used NSOM to image fluorescently labeled plasma membranes of fixed human skin fibroblasts, either dried or in buffer. A patchy distribution of a fluorescent lipid analog suggestive of lipid domains was observed in the fixed, dried cells. The sizes of these patches were consistent with the sizes of domains implied by fluorescence photobleaching recovery measurements. Patches of fluorescent lipid analog were not spatially correlated with patches of transmembrane proteins, HLA class I molecules labeled with fluorescent antibody; the patchiness of the HLA class I molecules was on a smaller scale and was not localized to the same regions of membrane as the lipid analog. Sizes of HLA patches were deduced from a two-dimensional spatial autocorrelation analysis of NSOM images that resolved patches with radii of approximately 70 and approximately 600 nm on fixed, dried cells labeled with IgG and 300-600 nm on cells labeled with Fab and imaged in buffer. The large-size patches were also resolved by far-field microscopy. Both the spatial autocorrelation analysis and estimates from fluorescence intensity indicate that the small patches seen on fixed, dried cells contain approximately 25-125 HLA-I molecules each.


Stem Cells | 2007

Cell-Cell and Cell-Extracellular Matrix Interactions Regulate Embryonic Stem Cell Differentiation

Silvia Chen; Wendy Fitzgerald; Joshua Zimmerberg; Hynda K. Kleinman; Leonid Margolis

Cell interactions with the extracellular matrix (ECM) play a critical role in their physiology. Here, we sought to determine the role of exogenous and endogenous ECM in the differentiation of nonhuman primate ESCs. We evaluated cell differentiation from expression of lineage gene mRNA and proteins using real‐time polymerase chain reaction and immunohistochemistry. We found that ESCs that attached to and spread upon highly adhesive collagen do not differentiate efficiently, whereas on the less adhesive Matrigel, ESCs form aggregates and differentiate along mesoderm and especially endoderm lineages. To further decrease ESC attachment to the substrate, we cultured them either on nonadhesive agarose or in suspension. In both cases, ESCs formed aggregates and efficiently differentiated along endoderm and mesoderm lineages, most strikingly into cardiomyocytes. Aggregates formed by thus‐differentiated ESCs started to beat with a frequency of 50–100 beats per minute and continued to beat for approximately a month. In spite of the presence of exogenous ECM, ESCs were dependent on endogenous ECM for their survival and differentiation, as the inhibition of endogenous collagen induced a gradual loss of ESCs and neither a simple matrix, such as type I collagen, nor the complex matrix Matrigel was able to rescue these cells. In conclusion, adhesiveness to various ECM and nonbiological substrates determines the differentiation of ESCs in such a way that efficient cell‐cell aggregation, together with less efficient cell attachment and spreading, results in more efficient cell differentiation.


Stem Cells | 2005

Complex extracellular matrices promote tissue-specific stem cell differentiation.

Deborah Philp; Silvia Chen; Wendy Fitzgerald; Jan Marc Orenstein; Leonid Margolis; Hynda K. Kleinman

Most cells in tissues contact an extracellular matrix on at least one surface. These complex mixtures of interacting proteins provide structural support and biological signals that regulate cell differentiation and may be important for stem cell differentiation. In this study, we have grown a rhesus monkey embryonic stem cell line in the presence of various extracellular matrix components in monolayer, in a NASA‐developed rotating wall vessel bioreactor in vitro, and subcutaneously in vivo. We find that individual components of the extracellular matrix, such as laminin‐1 or collagen I, do not influence the growth or morphology of the cells. In contrast, a basement membrane extract, Matrigel, containing multiple extracellular matrix components, induces the cells within 4 days to form immature glandular‐ and tubular‐like structures, many of which contain a lumen with polarized epithelium and microvilli. Such structures were seen in vitro when the cells were grown in the bioreactor and when the cells were injected into mice. These tubular‐ and glandular‐like structures were polarized epithelia based on immunostaining for laminin and cytokeratin. The cell aggregates and tumors also contained additional mixed populations of cells, including mesenchymal cells and neuronal cells, based on immunostaining with vimentin and neuronal markers. An extract of cartilage, containing multiple cartilage matrix components, promoted chondrogenesis in vivo where alcian blue–stained cartilage nodules could be observed. Some of these nodules stained with von Kossa, indicating that they had formed calcified cartilage. We conclude that extracellular matrices can promote the differentiation of embryonic stem cells into differentiated cells and structures that are similar to the tissue from which the matrix is derived. Such preprogramming of cell differentiation with extracellular matrices may be useful in targeting stem cells to repair specific damaged organs.


PLOS Pathogens | 2009

Genetic Variation in OAS1 Is a Risk Factor for Initial Infection with West Nile Virus in Man

Jean K. Lim; Andrea Lisco; David H. McDermott; Linda Huynh; Jerrold M. Ward; Bernard Johnson; Hope Johnson; John Pape; Gregory A. Foster; David E. Krysztof; Dean Follmann; Susan L. Stramer; Leonid Margolis; Philip M. Murphy

West Nile virus (WNV) is a re-emerging pathogen that can cause fatal encephalitis. In mice, susceptibility to WNV has been reported to result from a single point mutation in oas1b, which encodes 2′–5′ oligoadenylate synthetase 1b, a member of the type I interferon-regulated OAS gene family involved in viral RNA degradation. In man, the human ortholog of oas1b appears to be OAS1. The ‘A’ allele at SNP rs10774671 of OAS1 has previously been shown to alter splicing of OAS1 and to be associated with reduced OAS activity in PBMCs. Here we show that the frequency of this hypofunctional allele is increased in both symptomatic and asymptomatic WNV seroconverters (Caucasians from five US centers; total n = 501; OR = 1.6 [95% CI 1.2–2.0], P = 0.0002 in a recessive genetic model). We then directly tested the effect of this SNP on viral replication in a novel ex vivo model of WNV infection in primary human lymphoid tissue. Virus accumulation varied markedly among donors, and was highest for individuals homozygous for the ‘A’ allele (P<0.0001). Together, these data identify OAS1 SNP rs10774671 as a host genetic risk factor for initial infection with WNV in humans.


Analytical Chemistry | 2008

Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: a multicenter study.

Raina N. Fichorova; Nicola Richardson-Harman; Massimo Alfano; Laurent Bélec; Cédric Carbonneil; Silvia Chen; Lisa A. Cosentino; Kelly A. Curtis; Charlene S. Dezzutti; Betty Donoval; Gustavo F. Doncel; Melissa Donaghay; Jean-Charles Grivel; Esmeralda Guzman; Madeleine Hayes; Betsy C. Herold; Sharon L. Hillier; Carol Lackman-Smith; Alan Landay; Leonid Margolis; Kenneth H. Mayer; Jenna Malia Pasicznyk; Melanie Pallansch-Cokonis; Guido Poli; Patricia Reichelderfer; Paula Roberts; Irma Rodriguez; Héla Saïdi; Rosaria Rita Sassi; Robin Shattock

The increase of proinflammatory cytokines in vaginal secretions may serve as a surrogate marker of unwanted inflammatory reaction to microbicide products topically applied for the prevention of sexually transmitted diseases, including HIV-1. Interleukin (IL)-1β and IL-6 have been proposed as indicators of inflammation and increased risk of HIV-1 transmission; however, the lack of information regarding detection platforms optimal for vaginal fluids and interlaboratory variation limit their use for microbicide evaluation and other clinical applications. This study examines fluid matrix variants relevant to vaginal sampling techniques and proposes a model for interlaboratory comparisons across current cytokine detection technologies. IL-1β and IL-6 standards were measured by 12 laboratories in four countries, using 14 immunoassays and four detection platforms based on absorbance, chemiluminescence, electrochemiluminescence, and fluorescence. International reference preparations of cytokines with defined biological activity were spiked into (1) a defined medium simulating the composition of human vaginal fluid at pH 4.5 and 7.2, (2) physiologic salt solutions (phosphate-buffered saline and saline) commonly used for vaginal lavage sampling in clinical studies of cytokines, and (3) human blood serum. Assays were assessed for reproducibility, linearity, accuracy, and significantly detectable fold difference in cytokine level. Factors with significant impact on cytokine recovery were determined by Kruskal−Wallis analysis of variance with Dunn’s multiple comparison test and multiple regression models. All assays showed acceptable intra-assay reproducibility; however, most were associated with significant interlaboratory variation. The smallest reliably detectable cytokine differences (P < 0.05) derived from pooled interlaboratory data varied from 1.5- to 26-fold depending on assay, cytokine, and matrix type. IL-6 but not IL-1β determinations were lower in both saline and phosphate-buffered saline as compared to vaginal fluid matrix, with no significant effect of pH. The (electro)chemiluminescence-based assays were most discriminative and consistently detected <2-fold differences within each matrix type. The Luminex-based assays were less discriminative with lower reproducibility between laboratories. These results suggest the need for uniform vaginal sampling techniques and a better understanding of immunoassay platform differences and cross-validation before the biological significance of cytokine variations can be validated in clinical trials. This investigation provides the first standardized analytic approach for assessing differences in mucosal cytokine levels and may improve strategies for monitoring immune responses at the vaginal mucosal interface.


AIDS | 2006

Ex vivo culture of human colorectal tissue for the evaluation of candidate microbicides.

Patricia Fletcher; Julie Elliott; Jean-Charles Grivel; Leonid Margolis; Peter A. Anton; Ian McGowan; Robin J. Shattock

Objectives:Establishment of an in vitro model to evaluate rectal safety and the efficacy of microbicide candidates. Design:An investigation and characterization of human colorectal explant culture for screening candidate microbicides to prevent rectal transmission of HIV-1 infection. Methods:Human colorectal explants were cultured at the liquid–air interface on gelfoam rafts. Phenotypic characterization of HIV-1 target cells was performed by fluorescence-activated cell sorter analysis. HIV-1 infection was determined by the measurement of p24 antigen release, viral RNA, and proviral DNA accumulation. Results:Colorectal explant CD4 T cells expressed higher CCR5 and CXCR4 levels compared with blood. Minor differences between the rectal and sigmoid colon were observed with a trend for slightly higher CCR5 and HLA-DR expression in cells from the sigmoid colon. Favourable culture conditions were established for colorectal tissue. Although tissue structure degenerated with time, CD4: CD8 cell ratios remained constant, and tissue supported productive HIV-1 infection. The ability of candidate microbicides to inhibit R5 HIV-1 infection was evaluated. Polyanion candidates, PRO2000 and dextrin sulphate, provided 99% protection at 1 μg/ml and 1 mg/ml, respectively, equivalent to 1/5000 and 1/40 of the vaginal formulations. The nucleotide reverse transcriptase inhibitor (NRTI) 9-[2-(phosphonomethoxy)propyl]adenine (PMPA) provided protection at concentrations 1000-fold lower (10 μg/ml) than the proposed vaginal formulation (1%). Furthermore, non-NRTI UC-781 and TMC-120 provided greater than 99% inhibition at 3.3 or 0.33 μg/ml, respectively. No products demonstrated toxicity to rectal mucosa at inhibitory concentrations. Conclusion:Colorectal explant culture was shown to be a useful tool for the preclinical evaluation of potential microbicides. The data suggest that rectally applied microbicides might provide protection from HIV-1 transmission.


Cell Host & Microbe | 2008

Acyclovir is activated into a HIV-1 reverse transcriptase inhibitor in herpesvirus-infected human tissues

Andrea Lisco; Christophe Vanpouille; Egor P. Tchesnokov; Jean-Charles Grivel; Angélique Biancotto; Beda Brichacek; Julie Elliott; Emilie Fromentin; Robert Shattock; Peter A. Anton; Robert J. Gorelick; Jan Balzarini; Christopher McGuigan; Marco Derudas; Matthias Götte; Raymond F. Schinazi; Leonid Margolis

For most viruses, there is a need for antimicrobials that target unique viral molecular properties. Acyclovir (ACV) is one such drug. It is activated into a human herpesvirus (HHV) DNA polymerase inhibitor exclusively by HHV kinases and, thus, does not suppress other viruses. Here, we show that ACV suppresses HIV-1 in HHV-coinfected human tissues, but not in HHV-free tissue or cell cultures. However, addition of HHV-6-infected cells renders these cultures sensitive to anti-HIV ACV activity. We hypothesized that such HIV suppression requires ACV phosphorylation by HHV kinases. Indeed, an ACV monophosphorylated prodrug bypasses the HHV requirement for HIV suppression. Furthermore, phosphorylated ACV directly inhibits HIV-1 reverse transcriptase (RT), terminating DNA chain elongation, and can trap RT at the termination site. These data suggest that ACV anti-HIV-1 activity may contribute to the response of HIV/HHV-coinfected patients to ACV treatment and could guide strategies for the development of new HIV-1 RT inhibitors.

Collaboration


Dive into the Leonid Margolis's collaboration.

Top Co-Authors

Avatar

Jean-Charles Grivel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christophe Vanpouille

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrea Lisco

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wendy Fitzgerald

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anush Arakelyan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elena Vasilieva

Moscow State University of Medicine and Dentistry

View shared research outputs
Top Co-Authors

Avatar

Alexander Shpektor

Moscow State University of Medicine and Dentistry

View shared research outputs
Top Co-Authors

Avatar

Angélique Biancotto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Boris Baibakov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Svetlana Glushakova

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge