Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea M. Füchsl is active.

Publication


Featured researches published by Andrea M. Füchsl.


Psychoneuroendocrinology | 2012

Chronic psychosocial stress results in sensitization of the HPA axis to acute heterotypic stressors despite a reduction of adrenal in vitro ACTH responsiveness

Nicole Uschold-Schmidt; Kewir D. Nyuyki; Andrea M. Füchsl; Inga D. Neumann; Stefan O. Reber

Although chronic psychosocial stress is often accompanied by changes in basal hypothalamo-pituitary-adrenal (HPA) axis activity, it is vital for a chronically-stressed organism to mount adequate glucocorticoid (GC) responses when exposed to acute challenges. The main aim of the present study was to test whether this is true or not for the chronic subordinate colony housing (CSC, 19 days) paradigm, an established and clinically relevant mouse model of chronic psychosocial stress. As shown previously, CSC mice are characterized by unaffected morning and decreased evening plasma corticosterone (CORT) levels despite enlarged adrenals, suggesting a maladaptive breakdown of adrenal functioning. Plasma CORT levels, determined by repeated blood sampling via jugular vein catheters, as well as relative right adrenal CORT content were increased in CSC compared with single-housed control (SHC) mice in response to acute elevated platform (EPF, 5min) exposure. However, in vitro stimulation of adrenal explants with physiological and pharmacological doses of ACTH revealed an attenuated responsiveness of both the left and right adrenal glands following CSC, despite mRNA and/or protein expression of melanocortin 2 receptor (Mc2r), Mc2r accessory protein (MRAP), and key enzymes of steroidogenesis were not down-regulated. Taken together, we show that chronic psychosocial stressor exposure impairs in vitro ACTH responsiveness of both the left and right adrenal glands, whereas it increases adrenal responsiveness to an acute heterotypic stressor in vivo. This suggests that an additional factor present during acute stressor exposure in vivo rescues left and right adrenal ACTH sensitivity, or itself acts as CORT secretagogue in chronically stressed CSC mice.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice

Stefan O. Reber; Philip H. Siebler; Nina C. Donner; James T. Morton; David G. Smith; Jared M. Kopelman; Kenneth R. Lowe; Kristen J. Wheeler; James H. Fox; James E. Hassell; Benjamin N. Greenwood; Charline Jansch; Anja Lechner; Dominic Schmidt; Nicole Uschold-Schmidt; Andrea M. Füchsl; Dominik Langgartner; Frederick R. Walker; Matthew W. Hale; Gerardo Lopez Perez; Will Van Treuren; Antonio González; Andrea L. Halweg-Edwards; Monika Fleshner; Charles L. Raison; G. A. W. Rook; Shyamal D. Peddada; Rob Knight; Christopher A. Lowry

Significance The hygiene, or “old friends,” hypothesis proposes that lack of exposure to immunoregulatory microorganisms in modern urban societies is resulting in an epidemic of inflammatory disease, as well as psychiatric disorders in which chronic, low-level inflammation is a risk factor. An important determinant of immunoregulation is the microbial community occupying the host organism, collectively referred to as the microbiota. Here we show that stress disrupts the homeostatic relationship between the microbiota and the host, resulting in exaggerated inflammation. Treatment of mice with a heat-killed preparation of an immunoregulatory environmental microorganism, Mycobacterium vaccae, prevents stress-induced pathology. These data support a strategy of “reintroducing” humans to their old friends to promote optimal health and wellness. The prevalence of inflammatory diseases is increasing in modern urban societies. Inflammation increases risk of stress-related pathology; consequently, immunoregulatory or antiinflammatory approaches may protect against negative stress-related outcomes. We show that stress disrupts the homeostatic relationship between the microbiota and the host, resulting in exaggerated inflammation. Repeated immunization with a heat-killed preparation of Mycobacterium vaccae, an immunoregulatory environmental microorganism, reduced subordinate, flight, and avoiding behavioral responses to a dominant aggressor in a murine model of chronic psychosocial stress when tested 1–2 wk following the final immunization. Furthermore, immunization with M. vaccae prevented stress-induced spontaneous colitis and, in stressed mice, induced anxiolytic or fear-reducing effects as measured on the elevated plus-maze, despite stress-induced gut microbiota changes characteristic of gut infection and colitis. Immunization with M. vaccae also prevented stress-induced aggravation of colitis in a model of inflammatory bowel disease. Depletion of regulatory T cells negated protective effects of immunization with M. vaccae on stress-induced colitis and anxiety-like or fear behaviors. These data provide a framework for developing microbiome- and immunoregulation-based strategies for prevention of stress-related pathologies.


Stress | 2013

Chronic psychosocial stress in male mice causes an up-regulation of scavenger receptor class B type 1 protein in the adrenal glands

Andrea M. Füchsl; Nicole Uschold-Schmidt; Stefan O. Reber

Abstract Mice exposed to chronic subordinate colony housing (CSC, 19 days) show an exaggerated adrenal corticosterone response to an acute heterotypic stressor (elevated platform (EPF), 5 min) despite no difference from EPF-exposed single-housed control (SHC) mice in corticotropin (ACTH) secretion. In the present study, we asked the question whether this CSC-induced increase in adrenal capability to produce and secrete corticosterone is paralleled by an enhanced adrenal availability and/or mobilization capacity of the corticosterone precursor molecule cholesterol. Employing oil-red staining and western blot analysis we revealed comparable relative density of cortical lipid droplets and relative protein expression of hormone-sensitive lipase, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and low-density lipoprotein receptor (LDL-R) between CSC and SHC mice. However, relative protein expression of the scavenger receptor class B type 1 (SR-BI) was increased following CSC exposure. Moreover, analysis of plasma high-density lipoprotein-cholesterol (HDL-C) and LDL-cholesterol (LDL-C) revealed increased LDL-C levels in CSC mice. Together with the pronounced increase in adrenal weight, evidently mediated by hyperplasia of adrenocortical cells, these data strongly indicate an enhanced adrenal availability of and capacity to mobilize cholesterol in chronic psychosocially-stressed mice, contributing to their increased in vivo corticosterone response during acute heterotypic stressor exposure.


Frontiers in Psychiatry | 2015

Chronic Subordinate Colony Housing Paradigm: A Mouse Model to Characterize the Consequences of Insufficient Glucocorticoid Signaling

Dominik Langgartner; Andrea M. Füchsl; Nicole Uschold-Schmidt; David A. Slattery; Stefan O. Reber

Chronic, in particular chronic psychosocial, stress is a burden of modern societies and known to be a risk factor for numerous somatic and affective disorders (in detail referenced below). However, based on the limited existence of appropriate, and clinically relevant, animal models for studying the effects of chronic stress, the detailed behavioral, physiological, neuronal, and immunological mechanisms linking stress and such disorders are insufficiently understood. To date, most chronic stress studies in animals employ intermittent exposure to the same (homotypic) or to different (heterotypic) stressors of varying duration and intensity. Such models are only of limited value, since they do not adequately reflect the chronic and continuous situation that humans typically experience. Furthermore, application of different physical or psychological stimuli renders comparisons to the mainly psychosocial stressors faced by humans, as well as between the different stress studies almost impossible. In contrast, rodent models of chronic psychosocial stress represent situations more akin to those faced by humans and consequently seem to hold more clinical relevance. Our laboratory has developed a model in which mice are exposed to social stress for 19 continuous days, namely the chronic subordinate colony housing (CSC) paradigm, to help bridge this gap. The main aim of the current review article is to provide a detailed summary of the behavioral, physiological, neuronal, and immunological consequences of the CSC paradigm, and wherever possible relate the findings to other stress models and to the human situation.


Endocrinology | 2014

Stress Resilience: A Low-Anxiety Genotype Protects Male Mice From the Consequences of Chronic Psychosocial Stress

Andrea M. Füchsl; Inga D. Neumann; Stefan O. Reber

Chronic psychosocial stress is a risk factor for the development of affective as well as somatic disorders. However, vulnerability to adverse stress effects varies between individuals, with previous negative life events along with genetic predisposition playing a major role. In support, we previously showed that the consequences of chronic psychosocial stress induced by chronic subordinate colony housing (CSC, 19 days) can be amplified by pre-exposing mice to repeated maternal separation during early life. To test the significance of the genetic predisposition on the effects of CSC, mice selectively bred for high (mHAB) and low (mLAB) anxiety-related behavior and nonselected CD1 mice (mNAB) were exposed to CSC in the present study. In confirmation of our previous results, CSC mice of both mHAB and mNAB lines displayed chronic stress-related symptoms including increased adrenal weight, decreased adrenal in vitro ACTH sensitivity, lower plasma corticosterone to ACTH ratio, and increased interferon-γ secretion from isolated mesenteric lymph node cells compared with single-housed controls of the respective line. However, the CSC-induced anxiogenic effect found in mNAB was not confirmed in mHAB mice, possibly due to a ceiling effect in these highly anxious mice. Interestingly, mHAB were not more vulnerable to CSC than mNAB mice, whereas mLAB mice were resilient to CSC as indicated by all of the above mentioned parameters assessed. Taken together, our findings indicate that the genetic predisposition, in this case the innate anxiety of an individual, affects vulnerability to chronic psychosocial stress, with a low-anxiety phenotype mediating resilience to both affective and somatic consequences of CSC.


PLOS ONE | 2013

Mechanisms Underlying the Increased Plasma ACTH Levels in Chronic Psychosocially Stressed Male Mice

Andrea M. Füchsl; Dominik Langgartner; Stefan O. Reber

Mice exposed to chronic subordinate colony housing (CSC, 19 days), an established paradigm for chronic psychosocial stress, show unaffected basal morning plasma corticosterone (CORT) concentrations, despite enlarged adrenal glands and an increased CORT response to an acute heterotypic stressor. In the present study we investigate the mechanisms underlying these phenomena at the level of the pituitary. We show that both basal and acute stressor-induced (forced swim (FS), 6 min) plasma adrenocorticotropic hormone (ACTH) concentrations, the number of total and corticotroph pituitary cells, and relative protein expression of pituitary mineralocorticoid receptor and FK506-binding protein 51 was increased in CSC compared with single-housed control (SHC) mice, while relative corticotropin releasing hormone (CRH) receptor 1 (CRH-R1) and glucocorticoid receptor protein expression was down-regulated. Relative pituitary pro-opiomelanocortin and arginine vasopressin (AVP) receptor 1b (AVPR-1b) protein expression, FS (6 min)-induced ACTH secretion in dexamethasone-blocked mice, and the number of AVP positive magnocellular and parvocellular neurons in the paraventricular hypothalamic nucleus (PVN) was unaffected following CSC. Taken together, the data of the present study indicate that 19 days of CSC result in pituitary hyperactivity, under both basal and acute heterotypic stress conditions. Although further studies have to assess this in detail, an increased number of pituitary corticotrophs together with unaffected relative pituitary AVPR-1b and decreased CRH-R1 protein expression following CSC suggests that pituitary hyperdrive is mediated by newly formed corticotrophs that are more sensitive to AVP than CRH. Moreover, our data indicate that changes in PVN AVP and negative feedback inhibition seem not to play a major role in pituitary hyperactivity following CSC.


Brain Behavior and Immunity | 2017

Individual differences in stress vulnerability: The role of gut pathobionts in stress-induced colitis.

Dominik Langgartner; Daniel Peterlik; Sandra Foertsch; Andrea M. Füchsl; Petra Brokmann; Peter J. Flor; Zeli Shen; James G. Fox; Nicole Uschold-Schmidt; Christopher A. Lowry; Stefan O. Reber

Chronic subordinate colony housing (CSC), an established mouse model for chronic psychosocial stress, promotes a microbial signature of gut inflammation, characterized by expansion of Proteobacteria, specifically Helicobacter spp., in association with colitis development. However, whether the presence of Helicobacter spp. during CSC is critically required for colitis development is unknown. Notably, during previous CSC studies performed at Regensburg University (University 1), male specific-pathogen-free (SPF) CSC mice lived in continuous subordination to a physically present and Helicobacter spp.-positive resident. Therefore, it is likely that CSC mice were colonized, during the CSC procedure, with Helicobacter spp. originating from the dominant resident. In the present study we show that employing SPF CSC mice and Helicobacter spp.-free SPF residents at Ulm University (University 2), results in physiological responses that are typical of chronic psychosocial stress, including increased adrenal and decreased thymus weights, decreased adrenal in vitro adrenocorticotropic hormone (ACTH) responsiveness, and increased anxiety-related behavior. However, in contrast to previous studies that used Helicobacter spp.-positive resident mice, use of Helicobacter spp.-negative resident mice failed to induce spontaneous colitis in SPF CSC mice. Consistent with the hypothesis that the latter is due to a lack of Helicobacter spp. transmission from dominant residents to subordinate mice during the CSC procedure, colonization of SPF residents with Helicobacter typhlonius at University 2, prior to the start of the CSC model, rescued the colitis-inducing potential of CSC exposure. Furthermore, using SPF CSC mice and H. typhlonius-free SPF residents at University 1 prevented CSC-induced colitis. In summary, our data support the hypothesis that the presence or absence of exposure to certain pathobionts contributes to individual variability in susceptibility to stress-/trauma-associated pathologies and to reproducibility of stress-related outcomes between laboratories.


Journal of Endocrinology | 2013

HPA axis changes during the initial phase of psychosocial stressor exposure in male mice

Nicole Uschold-Schmidt; Daniel Peterlik; Andrea M. Füchsl; Stefan O. Reber

Chronic subordinate colony (CSC) housing for 19 days results in unaffected basal morning corticosterone (CORT) levels despite a pronounced increase in adrenal mass, likely mediated by an attenuation of adrenal corticotropin (ACTH) responsiveness. Given that the pronounced increase in basal morning plasma CORT levels returns to baseline as early as 48 h after the start of CSC, it is likely that the attenuated ACTH responsiveness develops already during this initial phase. This was tested in the present study. In line with previous findings, basal morning plasma CORT levels were elevated following 10 h, but not 48 h, of CSC exposure. Basal morning plasma ACTH concentrations and relative in vivo adrenal CORT content were increased following 10 h and to a lesser extent following 48 h of CSC exposure, positively correlating. Relative in vitro adrenal CORT secretion in response to ACTH (100 nM) and kidney protein expression of 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) were unaffected following both time points. Adrenal mRNA expression of key steroidogenic enzymes was unaffected/decreased following 10 h and unaffected/increased following 48 h of CSC exposure. Together, our findings suggest that basal plasma hypercorticism during the initial CSC phase is mainly prevented by an attenuation of pituitary ACTH release. An increased absolute adrenal weight following 10 h, but not 48 h, of CSC exposure indicates that restoration of normal adrenal mass also adds to a lesser extent to prevent basal hypercorticism. A contributing role of alterations in enzymatic CORT degradation and steroidogenic enzyme availability is likely, but has to be further addressed in future studies.


Stress | 2017

Light and water are not simple conditions: fine tuning of animal housing in male C57BL/6 mice

Dominik Langgartner; Sandra Foertsch; Andrea M. Füchsl; Stefan O. Reber

Abstract While animal housing conditions are highly controlled and standardized between different laboratories, there are still many subtle differences that unavoidably influence the host organisms and, consequently, interlaboratory reproducibility. Here, we investigated the physiological and immunological consequences between two light/dark cycle (LDC) lengths (14-h/10-h vs. 12-h/12-h LDC) and two commonly used forms of drinking water (acidified drinking water (AW) versus normal tap water (NW)) in single-housed (SH) mice. Our results indicate that SH mice bred under a 12-h/12-h LDC and NW at the supplier’s facility showed increased basal morning plasma corticosterone (CORT) levels even 4 weeks after arrival at our animal facility employing a 14-h/10-h LDC and AW. This effect was even more pronounced two weeks after arrival and had abated after 8 weeks. In agreement, increased plasma adrenocorticotropic hormone (ACTH), adrenal in vitro ACTH sensitivity, as well as relative and absolute adrenal weight normalized during this 8-week exposure to the novel and unfamiliar 14-h/10-h LDC and AW. Employment of a 12-h/12-h LDC in our facility completely abrogated the CORT-elevating effects of the 14-h/10-h LDC, despite these animals drinking AW. When both the water and light conditions were matched to those at the supplier’s facility, we observed a further reduction in adrenal weight, increased thymus weight, and decreased pro-inflammatory cytokine secretion of isolated and anti-CD3/28-stimulated mesenteric lymph node cells. In summary, our results indicate that prolonged alteration of both the light phase and drinking water represent severe and long-lasting stressors for laboratory rodents. These findings are of general interest for all scientists obtaining their experimental animals from conventional suppliers.


PLOS ONE | 2016

Chronic Psychosocial Stress and Negative Feedback Inhibition: Enhanced Hippocampal Glucocorticoid Signaling despite Lower Cytoplasmic GR Expression.

Andrea M. Füchsl; Stefan O. Reber

Chronic subordinate colony housing (CSC), a pre-clinically validated mouse model for chronic psychosocial stress, results in increased basal and acute stress-induced plasma adrenocorticotropic hormone (ACTH) levels. We assessed CSC effects on hippocampal glucocorticoid (GC) receptor (GR), mineralocorticoid receptor (MR), and FK506 binding protein (FKBP51) expression, acute heterotypic stressor-induced GR translocation, as well as GC effects on gene expression and cell viability in isolated hippocampal cells. CSC mice showed decreased GR mRNA and cytoplasmic protein levels compared with single-housed control (SHC) mice. Basal and acute stress-induced nuclear GR protein expression were comparable between CSC and SHC mice, as were MR and FKBP51 mRNA and/or cytoplasmic protein levels. In vitro the effect of corticosterone (CORT) on hippocampal cell viability and gene transcription was more pronounced in CSC versus SHC mice. In summary, CSC mice show an, if at all, increased hippocampal GC signaling capacity despite lower cytoplasmic GR protein expression, making negative feedback deficits in the hippocampus unlikely to contribute to the increased ACTH drive following CSC.

Collaboration


Dive into the Andrea M. Füchsl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Lowry

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge