Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea M. Ghez is active.

Publication


Featured researches published by Andrea M. Ghez.


The Astrophysical Journal | 2008

MEASURING DISTANCE AND PROPERTIES OF THE MILKY WAY'S CENTRAL SUPERMASSIVE BLACK HOLE WITH STELLAR ORBITS

Andrea M. Ghez; Samir Salim; Nevin N. Weinberg; Jessica R. Lu; Tuan Do; J. K. Dunn; K. Matthews; Mark R. Morris; Sylvana Yelda; E. E. Becklin; Ted Kremenek; Milos Milosavljevic; J. Naiman

We report new precision measurements of the properties of our Galaxys supermassive black hole. Based on astrometric (1995-2007) and radial velocity (RV; 2000-2007) measurements from the W. M. Keck 10m telescopes, a fully unconstrained Keplerian orbit for the short-period star S0-2 provides values for the distance (R_0) of 8.0±0.6 kpc, the enclosed mass (M_(bh)) of 4.1±0.6x10^6 M☉ and the black holes RV, which is consistent with zero with 30 km/s uncertainty. If the black hole is assumed to be at rest with respect to the Galaxy (e. g., has no massive companion to induce motion), we can further constrain the fit, obtaining R_0 = 8.4±0.4kpc and M_(bh) 4.5±0.4x10^6 M☉. More complex models constrain the extended dark mass distribution to be less than 3-4x10^5 M☉ within 0.01 pc, ~100 times higher than predictions from stellar and stellar remnant models. For all models, we identify transient astrometric shifts from source confusion (up to 5 times the astrometric error) and the assumptions regarding the black holes radial motion as previously unrecognized limitations on orbital accuracy and the usefulness of fainter stars. Future astrometric and RV observations will remedy these effects. Our estimates of R_0 and the Galaxys local rotation speed, which it is derived from combining R_0 with the apparent proper motion of Sgr A*, (θ_0 = 229±18 km/s), are compatible with measurements made using other methods. The increased black hole mass found in this study, compared to that determined using projected mass estimators, implies a longer period for the innermost stable orbit, longer resonant relaxation timescales for stars in the vicinity of the black hole and a better agreement with the M_(bh)-σ relation.


The Astrophysical Journal | 2005

Stellar Orbits around the Galactic Center Black Hole

Andrea M. Ghez; Samir Salim; Seth David Hornstein; Angelle Maria Tanner; Jessica R. Lu; Mark R. Morris; E. E. Becklin; Gaspard Duchene

Wepresentnew diffraction-limitedimagesoftheGalacticcenter, obtainedwith theW.M.KeckI10mtelescope. Within0B4oftheGalaxy’scentraldarkmass,17proper-motionstars,withKmagnitudesrangingfrom 14.0to16.8, areidentified,and10ofthesearenewdetections(sixwerealsoindependentlydiscoveredbyothers).Inthissample, three newly identified (S0-16, S0-19, and S0-20) and four previously known (S0-1, S0-2, S0-4, and S0-5) sources have measured proper motions that reveal orbital solutions. Orbits are derived simultaneously so that they jointly constrain the central dark object’s properties: its mass,its position, and, for the first time using orbits, its motion on the plane of the sky. This analysis pinpoints the Galaxy’s central dark mass to within 1.3 mas (10 AU) and limits its propermotionto1:5 � 0:5masyr � 1 (orequivalently60 � 20kms � 1 )withrespecttothecentralstellarcluster.This localizationofthecentraldarkmassisconsistentwithourderivationofthepositionoftheradiosourceSgrA*inthe infrared reference frame (� 10 mas) but with an uncertainty that is a factor of 8 times smaller, which greatly facilitates searches for near-infrared counterparts to the central black hole. Consequently, one previous claim for such a counterpart can now be ascribed to a close stellar passage in 1996. Furthermore, we can place a conservative upper limit of 15.5 mag on any steady state counterpart emission. The estimated central dark mass from orbital motions is 3:7(� 0:2) ;10 6 R0= 8k pc ðÞ ½� 3 M� ; this is a more direct measure of mass than those obtained from velocitydispersion measurements,which are asmuchasafactorof2 smaller.The Galactic center’sdistance,which adds an additional 19% uncertainty in the estimated mass, is now the limiting source of uncertainty in the absolute mass. For stars in this sample, the closest approach is achieved by S0-16, which came within a mere 45 AU (=0:0002 pc ¼ 600Rs) at a velocity of 12,000 km s � 1 . This increases the inferred dark mass density by 4 orders of magnitude compared to earlier analyses based on velocity and acceleration vectors, making the Milky Way the strongest existing case for a supermassive black hole at the center of a normal-type galaxy. Well-determined orbital parameters for these seven Sgr A* cluster stars also provide new constraints on how these apparently massive, young (<10 Myr) stars formed in a region that seems to be hostile to star formation. Unlike the more distant He i emission line stars—another population of young stars in the Galactic center—that appear to have coplanar orbits, the Sgr A* cluster stars have orbital properties (eccentricities, angular momentum vectors, and apoapse directions) that are consistent with an isotropic distribution. Therefore, many of the mechanisms proposed for the formation of the He i stars, such as formation from a preexisting disk, are unlikely solutions for the Sgr A* cluster stars. Unfortunately, alternative theories for producing young stars, or old stars that look young, in close proximity to a centralsupermassiveblackholeareallalsosomewhatproblematic.Understandingtheapparentyouthofstarsinthe Sgr A* cluster, as well as the more distant Hei emission line stars, has now become one of the major outstanding issues in the study of the Galactic center. Subject headingg black hole physics — Galaxy: center — Galaxy: kinematics and dynamics — infrared: stars — techniques: high angular resolution


The Astrophysical Journal | 1998

High Proper Motion Stars in the Vicinity of Sgr A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy

Andrea M. Ghez; B. Klein; Mark R. Morris; E. E. Becklin

Over a 2 year period we have conducted a di†raction-limited imaging study at 2.2 km of the inner 6A ) 6A of the central stellar cluster of the Galaxy using the W. M. Keck 10 m telescope. The K-band images obtained in 1995 June, 1996 June, and 1997 May have the highest angular resolution obtained at near-infrared wavelengths from ground or space pc) and reveal a large population of (h res \ 0A\0.002 faint stars. We use an unbiased approach for identifying and selecting stars to be included in this proper- motion study, which results in a sample of 90 stars with brightness ranging from K \ 9E17 mag and two-dimensional velocities as large as 1400 ^ 100 km s~1. Compared to earlier work et al. (Eckart 1997; et al. the source confusion is reduced by a factor of 9, the number of stars with proper- Genzel 1997), motion measurement in the central 25 arcsec2 of our Galaxy is doubled, and the accuracy of the velocity measurements in the central 1 arcsec2 is improved by a factor of 4. The peaks of both the stellar surface density and the velocity dispersion are consistent with the position of the unusual radio source and black hole candidate Sgr A*, which suggests that Sgr A* is coincident with the dynamical center (^0A.1) of the Galaxy. As a function of distance from Sgr A*, the velocity dispersion displays a fallo† well--tted by Keplerian motion about a central dark mass of 2.6 ^ 0.2 ) 106 con-ned to a (p v D r~0.5B0.1) M _ volume of at most 10~6 pc3, which is consistent with earlier results. Although uncertainties in the mea- surements mathematically allow for the matter to be distributed over this volume as a cluster, no realis- tic cluster is physically tenable. Thus, independent of the presence of Sgr A*, the large inferred central density of at least 1012 pc~3, which exceeds the volume-averaged mass densities found at the center M _ of any other galaxy, leads us to the conclusion that our Galaxy harbors a massive central black hole. Subject headings: black hole physics E Galaxy: center E Galaxy: kinematics and dynamics E infrared: stars E stars: kinematics E techniques: image processing


The Astrophysical Journal | 2001

Observational constraints on the formation and evolution of binary stars

R. White; Andrea M. Ghez

We present a high spatial resolution multiwavelength survey of 44 young binary star systems in Taurus-Auriga with separations of 10-1000 AU. These observations, which were obtained using the Hubble Space Telescope and the NASA Infrared Telescope Facility, quadruple the number of close (less than 100 AU) binary stars with spatially resolved measurements from 0.3 to 2.2 μm and are the first 3.6 μm measurements for the majority of the companion stars in the sample. Masses and ages are estimated for the components observed at optical wavelengths. The relative ages of binary star components are more similar than the relative ages of randomly paired single stars within the same star-forming region. This is the first statistically significant evidence for coeval formation. Only one of the companion masses is substellar, from which we conclude that the apparent overabundance of T Tauri star companions relative to main-sequence star companions is not due to a wealth of substellar secondaries that would have been missed in main-sequence surveys. The circumstellar environments of binary star systems are studied in this work through three diagnostics: the infrared color K-L, the ultraviolet excess ΔU, and Hα emission. Several conclusions are drawn. First, the mass accretion rates for primary stars are similar to single stars, which suggests that companions as close as 10 AU have little effect on the mass accretion rate. Second, although most classical T Tauri star binaries retain both a circumprimary and a circumsecondary disk, there are several systems with only a circumprimary disk. Systems with only a circumsecondary disk are rare. This suggests that circumprimary disks survive longer than circumsecondary disks. Third, primary stars accrete at a higher rate, on average, than secondary stars. This is most likely because of their larger stellar mass, since the mass accretion rates for both single and binary T Tauri stars exhibit a moderate mass dependence. Fourth, approximately 10% of T Tauri binary star components have very red near-infrared colors (K-L > 1.4) and unusually high mass accretion rates. This phenomenon does not appear to be restricted to binary systems, however, since a comparable fraction of single T Tauri stars exhibit the same properties. These high accretion rate stars are probably not at an earlier stage of evolution, as has been proposed. Their semblance of younger protostars at optical and infrared wavelengths is most likely because of their similar high levels of accretion, which are above the norm for T Tauri stars, and not because of similar ages. The stellar and circumstellar properties are also used to trace indirectly the evolution of circumbinary material. In contrast to single T Tauri stars, which have disk dissipation timescales comparable to their ages, the disk dissipation timescales for binary T Tauri stars are ~10 times less than their ages. Replenishment of the inner circumstellar disks may be necessary to explain the continuing disk accretion in these systems. The longer disk lifetimes of circumprimary disks, despite their higher depletion rates, suggest that circumprimary disks are being preferentially replenished, possibly from a circumbinary reservoir with low angular momentum relative to the binary. Further support for circumbinary reservoirs comes from the observed correlated presence of circumprimary and circumsecondary disks for binaries with separations of less than ~200 AU. The presence of disks appears uncorrelated for wider binaries. Additionally, binaries with separations of less than ~100 AU exhibit a higher fraction of high mass ratio (ms/mp) pairs than wider binaries. These separation-dependent properties can be explained if the components are being replenished from a common circumbinary reservoir with low angular momentum. The components of the closest pairs are expected to be more equally replenished than the widest pairs, which consequently sustains both disks and drives their mass ratios toward unity. Overall, the results of this study corroborate previous work that suggests that fragmentation is the dominant binary star formation mechanism in Taurus-Auriga; disk instabilities and capture seem unlikely.


The Astronomical Journal | 1993

The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius : A 2.2 micron speckle imaging survey

Andrea M. Ghez; G. Neugebauer; K. Matthews

We present the results of a magnitude limited (K ≤ 8.5 mag) multiplicity survey of T Tauri stars (TTS) in two nearby star forming regions (SFR), Taurus-Auriga and Ophiuchus-Scorpius. Each of the 69 stars in the sample was observed at K(2.2 µm) with an infrared array camera on the Hale 5-m Telescope at Palomar Observatory and imaged using two-dimensional speckle interferometric techniques. Thirty three companion stars were found, of which 15 were new detections. A subset of 64 observations was sensitive to all companion stars in the projected linear range 14 to 225 AU and the magnitude difference range 0.0 to 2.0 mag. We used this subset and region to study the multiplicity of TTS; the frequency of companion stars within this region is 34 ± 9%, independent of SFR. We discovered a distinction between the classical TTS (CTTS) and the weak-lined TTS (WTTS) based on the binary star frequency as a function of separation; the WITS dominate the binary star distribution at the closer separations and the CTTS populate the wider separations. The cross over occurred near 100 AU, the size typically quoted for a circumstellar disk. We suggest that all TTS begin as CTTS and become WTTS when accretion has ceased, and that the nearby companion stars act to shorten the accretion timescale in multiple star systems. Integrated over all magnitude differences the binary star frequency in the projected linear separation range 14 to 225 AU for TTS (59 ± 16%) is a factor of 3.5 greater than that of the solar-type main sequence stars (17 ± 3%). Given the limited angular separation range that we are sensitive to, i.e., both the spectroscopic and wide binaries are missed, the rate at which binaries are detected suggests that most, if not all, TTS stars have companions. We propose that the observed overabundance of companions to TTS with respect to their older counterparts on the main sequence is an evolutionary effect; in this scheme triple and higher order TTS, which are observed at higher frequencies than for the solar-type main sequence stars, are disrupted by close encounters with another star or system of stars.


The Astrophysical Journal | 2003

The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy's Central Black Hole: A Paradox of Youth

Andrea M. Ghez; Gaspard Duchene; K. Matthews; Seth David Hornstein; Angelle Maria Tanner; J. Larkin; Mark R. Morris; E. E. Becklin; Samir Salim; T. Kremenek; David H. Thompson; B. T. Soifer; G. Neugebauer; Ian S. McLean

We have obtained the first detection of spectral absorption lines in one of the high-velocity stars in the vicinity of the Galaxys central supermassive black hole. Both Brγ (2.1661 μm) and He I (2.1126 μm) are seen in absorption in S0-2 with equivalent widths (2.8 ± 0.3 and 1.7 ± 0.4 A) and an inferred stellar rotational velocity (220 ± 40 km s^(-1)) that are consistent with that of an O8-B0 dwarf, which suggests that it is a massive (~15 M_☉) young (less than 10 Myr) main-sequence star. This presents a major challenge to star formation theories, given the strong tidal forces that prevail over all distances reached by S0-2 in its current orbit (130-1900 AU) and the difficulty in migrating this star inward during its lifetime from farther out where tidal forces should no longer preclude star formation. The radial velocity measurements (v_z) = -510 ± 40 km s^(-1)) and our reported proper motions for S0-2 strongly constrain its orbit, providing a direct measure of the black hole mass of 4.1(±0.6) × 10^6 (Ro/8kpc)^3 M_☉. The Keplerian orbit parameters have uncertainties that are reduced by a factor of 2-3 compared to previously reported values and include, for the first time, an independent solution for the dynamical center; this location, while consistent with the nominal infrared position of Sgr A^*, is localized to a factor of 5 more precisely (±2 mas). Furthermore, the ambiguity in the inclination of the orbit is resolved with the addition of the radial velocity measurement, indicating that the star is behind the black hole at the time of closest approach and counterrevolving against the Galaxy. With further radial velocity measurements in the next few years, the orbit of S0-2 will provide the most robust estimate of the distance to the Galactic center.


The Astrophysical Journal | 1995

A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions

Michal Simon; Andrea M. Ghez; Ch. Leinert; L. Cassar; W. P. Chen; Robert R. Howell; R. Jameson; K. Matthews; G. Neugebauer; A. Richichi

We present an IR lunar occultation and direct imaging search for companions in the Ophiuchus star-forming region and update a similar search of the Taurus region. The search is sensitive to companions in the angular separation range 0.005-10 sec. In Ophiuchus, we surveyed 35 young star targets; this sample contains at least 10 binaries, two triples, and one quadruple. Ten of the companion stars are newly discovered. In Taurus, the survey now includes 47 systems among which there are at least 22 binaries and four triples. Only two companion stars are newly identified because there is strong overlap with prior work. All the triples and quadruple are hierarchical. The observed binary frequency in Ophiuchus, in the 3-1400 AU range of separations, is at least 1.1 +/- 0.3 that of the nearby solar-like stars. This value is a lower bound because we make no corrections for incompleteness. In Taurus, in the same range of separations, the observed binary frequency is at least 1.6 +/- 0.3 that of the nearby solar-like stars. This value extends Ghez et al.s (1993) and Leinerts et al.s (1993) determination of an excess binary frequency to 3 AU separation. We used the weak-line T Tauri star/T Tauri star (WT/TT) type and the K-L color index to distinguish between systems with and without inner disks. We find no convincing difference in the binary frequency or distribution of separations of the systems with and without inner disks. The 1.3 mm continuum emission of the single systems exceeds that of the multiples suggesting that their extensive outer disks are more massive. The specific angular momenta of the binaries overlap those of molecular cloud cores measured by Goodman et al. (1993).


Publications of the Astronomical Society of the Pacific | 2000

First Light Adaptive Optics Images from the Keck II Telescope : A New Era of High Angular Resolution Imagery

Peter L. Wizinowich; D. S. Acton; Christian R. Shelton; Paul J. Stomski; J. Gathright; K. Ho; William Lupton; Kevin Tsubota; Olivier Lai; Claire E. Max; James M. Brase; Jong R. An; Kenneth Avicola; Scot S. Olivier; Donald T. Gavel; Bruce A. Macintosh; Andrea M. Ghez; J. Larkin

ABSTRACT Adaptive optics (AO) is a technology that corrects in real time for the blurring effects of atmospheric turbulence, in principle allowing Earth‐bound telescopes to achieve their diffraction limit and to “see” as clearly as if they were in space. The power of AO using natural guide stars has been amply demonstrated in recent years on telescopes up to 3–4 m in diameter. The next breakthrough in astronomical resolution was expected to occur with the implementation of AO on the new generation of large, 8–10 m diameter telescopes. In this paper we report the initial results from the first of these AO systems, now coming on line on the 10 m diameter Keck II Telescope. The results include the highest angular resolution images ever obtained from a single telescope (0 \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsx...


The Astrophysical Journal | 1999

A Test of Pre-Main-Sequence Evolutionary Models across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tauri*

Russel J. White; Andrea M. Ghez; I. Neill Reid; Greg Schultz

We present spatially separated optical spectra of the components of the young hierarchical quadruple GG Tau. Spectra of GG Tau Aa and Ab (separation 025 ~ 35 AU) were obtained with the Faint Object Spectrograph on board the Hubble Space Telescope. Spectra of GG Tau Ba and Bb (separation 148 ~ 207 AU) were obtained with both the HIRES and the LRIS spectrographs on the W. M. Keck telescopes. The components of this minicluster, which span a wide range in spectral type (K7-M7), are used to test both evolutionary models and the temperature scale for very young, low-mass stars under the assumption of coeval formation. Of the evolutionary models tested, those of Baraffe et al. yield the most consistent ages when combined with a temperature scale intermediate between that of dwarfs and giants. The version of the Baraffe et al. models computed with a mixing length nearly twice the pressure scale height is of particular interest, as it predicts masses for GG Tau Aa and Ab that are in agreement with their dynamical mass estimate. Using this evolutionary model and a coeval (at 1.5 Myr) temperature scale, we find that the coldest component of the GG Tau system, GG Tau Bb, is substellar with a mass of 0.044 ± 0.006 M☉. This brown dwarf companion is especially intriguing as it shows signatures of accretion, although this accretion is not likely to alter its mass significantly. GG Tau Bb is currently the lowest mass, spectroscopically confirmed companion to a T Tauri star, and is one of the coldest, lowest mass T Tauri objects in the Taurus-Auriga star-forming region.


The Astrophysical Journal | 1997

The Planet around 51 Pegasi

Geoffrey W. Marcy; R. Paul Butler; Eric Williams; Lars Bildsten; James R. Graham; Andrea M. Ghez; J. Garrett Jernigan

Doppler measurements of 51 Pegasi have been made from 1995 October through 1996 August, with a precision of 5 m s-1. We find a period of 4.231 days, a velocity amplitude of 56 ± 1 m s-1, and a velocity curve that is essentially sinusoidal, all in excellent agreement with Mayor & Queloz. The only viable interpretation is a companion having minimum mass, m sin i = 0.45 MJupiter, in a circular orbit of radius of 0.051 AU, with an eccentricity less than 0.01. Alternative explanations involving stellar surface phenomena such as pulsation or spots are ruled out. The lack of tidal spin-up of the star constrains the mass of the companion to be less than 15 MJupiter. If the tidal Q-value is less than ~106 for the planet (close to Jupiters presumed value), then internal dissipation is adequate to circularize the orbit and synchronize the planets rotation. After subtracting the best-fit Keplerian velocity curve, the residuals exhibit no apparent variations at a level of 5 m s-1 during 10 months. The absence of further reflex motion along with limits from IR speckle observations rule out additional companions in a large portion of the parameter space of mass and orbital radius, including all masses greater than 1 MJupiter within 2.0 AU.

Collaboration


Dive into the Andrea M. Ghez's collaboration.

Top Co-Authors

Avatar

Mark R. Morris

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuan Do

University of California

View shared research outputs
Top Co-Authors

Avatar

Sylvana Yelda

University of California

View shared research outputs
Top Co-Authors

Avatar

Keith Matthews

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. E. Becklin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Matthews

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge