Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Molod is active.

Publication


Featured researches published by Andrea Molod.


Journal of Climate | 2011

MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications

Michele M. Rienecker; Max J. Suarez; Ronald Gelaro; Ricardo Todling; Julio T. Bacmeister; Emily Liu; Michael G. Bosilovich; Siegfried D. Schubert; Lawrence L. Takacs; Gi-Kong Kim; Stephen Bloom; Junye Chen; Douglas W. Collins; Austin Conaty; Arlindo da Silva; Wei Gu; Joanna Joiner; Randal D. Koster; Robert Lucchesi; Andrea Molod; Tommy Owens; Steven Pawson; Philip J. Pegion; Christopher R. Redder; Rolf H. Reichle; Franklin R. Robertson; Albert G. Ruddick; Meta Sienkiewicz; John S. Woollen

AbstractThe Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...


Journal of Climate | 2017

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

Ronald Gelaro; Will McCarty; Max J. Suarez; Ricardo Todling; Andrea Molod; Lawrence L. Takacs; C. A. Randles; Anton Darmenov; Michael G. Bosilovich; Rolf H. Reichle; Krzysztof Wargan; L. Coy; Richard I. Cullather; C. Draper; Santha Akella; Virginie Buchard; Austin Conaty; Arlindo da Silva; Wei Gu; Gi-Kong Kim; Randal D. Koster; Robert Lucchesi; Dagmar Merkova; J. E. Nielsen; Gary Partyka; Steven Pawson; William M. Putman; Michele M. Rienecker; Siegfried D. Schubert; Meta Sienkiewicz

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASAs Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRAs terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).


Journal of Advances in Modeling Earth Systems | 2013

CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

Minghua Zhang; Christopher S. Bretherton; Peter N. Blossey; Phillip H. Austin; Julio T. Bacmeister; Sandrine Bony; Florent Brient; Suvarchal-Kumar Cheedela; Anning Cheng; Anthony D. Del Genio; Stephan R. de Roode; Satoshi Endo; Charmaine N. Franklin; Jean-Christophe Golaz; Cecile Hannay; Thijs Heus; Francesco Isotta; Jean-Louis Dufresne; In-Sik Kang; Hideaki Kawai; Martin Köhler; Vincent E. Larson; Yangang Liu; A. P. Lock; Ulrike Lohmann; Marat Khairoutdinov; Andrea Molod; Roel Neggers; Philip J. Rasch; Irina Sandu

CGILS—the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)—investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the “NESTS” negative cloud feedback and the “SCOPE” positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence—Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations.


Journal of Climate | 1996

The climatology of parameterized physical processes in the GEOS-1 GCM and their impact on the GEOS-1 data assimilation system

Andrea Molod; H. M. Helfand; Lawrence L. Takacs

Abstract The Goddard Earth Observing System (GEOS) General Circulation Model (GCM) is part of the GEOS Data Assimilation System (DAS), which is being developed at the Goddard Data Assimilation Office for the production of climate datasets. This study examines Version 1 of the GEOS CYCM by evaluating the quality of the fields that relate most closely to the GCM physical parameterizations and examines the impact of the GCM climate errors on the climate of the DAS assimilated fields. The climate characteristics are evaluated using independent satellite and ground-based data for comparison. The GEOS-1 GCM shows reasonably good agreement with available observations in terms of general global distribution and seasonal cycles. The major biases or systematic errors are a tendency toward a dry tropical atmosphere and an inadequate cloud radiative impact in the extratropics. Other systematic errors are a generally wet subtropical atmosphere, slightly excess precipitation over the continents, and excess cloud radiat...


Journal of Geophysical Research | 2015

An assessment of upper‐troposphere and lower‐stratosphere water vapor in MERRA, MERRA2 and ECMWF reanalyses using Aura MLS observations

Jonathan H. Jiang; Hui Su; Chengxing Zhai; Longtao Wu; K. Minschwaner; Andrea Molod; Adrian M. Tompkins

Global water vapor (H2O) measurements from Microwave Limb Sounder (MLS) are used to evaluate upper tropospheric (UT) and lower stratospheric (LS) H2O products produced by NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA), its newest release MERRA2, and European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalyses. Focusing on the H2O amount and transport from UT to LS, we show that all reanalyses overestimate annual global mean UT H2O by up to ~150% compared to MLS observations. Substantial differences in H2O transport are also found between the observations and reanalyses. Vertically, H2O transport across the tropical tropopause (16–20 km) in the reanalyses is faster by up to ~86% compared to MLS observations. In the tropical LS (21–25 km), the mean vertical transport from ECMWF is 168% faster than the MLS estimate, while MERRA and MERRA2 have vertical transport velocities within 10% of MLS values. Horizontally at 100 hPa, both observation and reanalyses show faster poleward transport in the Northern Hemisphere (NH) than in the Southern Hemisphere (SH). Compared to MLS observations, the H2O horizontal transport for both MERRA and MERRA2 is 106% faster in the NH but about 42–45% slower in the SH. ECMWF horizontal transport is 16% faster than MLS observations in both hemispheres. The ratio of northward to southward transport velocities for ECMWF is 1.4, which agrees with MLS observation, while the corresponding ratios for MERRA and MERRA2 are about 3.5 times larger.


Journal of Hydrometeorology | 2003

A New Look at Modeling Surface Heterogeneity: Extending Its Influence in the Vertical

Andrea Molod; Haydee Salmun; Darryn W. Waugh

Abstract Heterogeneities in the land surface exist on a wide range of spatial scales and make the coupling between the land surface and the overlying boundary layer complex. This study investigates the vertical extent to which the surface heterogeneities affect the boundary layer turbulence. A technique called “extended mosaic” is presented. It models the coupling between the heterogeneous land surface and the atmosphere by allowing the impact of the subgrid-scale variability to extend throughout the vertical extent of the planetary boundary layer. Simulations with extended mosaic show that there is a GCM level at which the distinct character of the turbulence over different land scene types is homogenized, which the authors call the model blending height. The behavior of the model blending height is an indicator of the mechanism by which the surface heterogeneities extend their direct influence upward into the boundary layer and exert their influence on the climate system. Results are presented that show...


Journal of Climate | 2016

Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2

Lawrence Coy; Krzysztof Wargan; Andrea Molod; William R. McCarty; Steven Pawson

The structure, dynamics, and ozone signal of the Quasi-Biennial Oscillation produced by the 35-year NASA MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications) reanalysis are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag, and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that the MERRA-2 reanalysis produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980-2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50 hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments.


Journal of Geophysical Research | 1997

An evaluation of deep convective mixing in the Goddard Chemical Transport Model using International Satellite Cloud Climatology Project cloud parameters

Dale J. Allen; Kenneth E. Pickering; Andrea Molod

The simulation of deep convective mixing in the Goddard Chemical Transport Model (GCTM) is evaluated by comparing 1990-1992 distributions of upper tropospheric convective mass flux and cloud top pressure from the Goddard Earth Observing System data assimilation system (GEOS-1 DAS) with deep convective cloud fields from the International Satellite Cloud Climatology Project (ISCCP). Deep convective mixing in the GCTM is calculated using convective information from the GEOS-1 DAS. Therefore errors introduced when deep convection is parameterized in the GEOS-1 DAS affect the distribution of trace gases in the GCTM. The location of deep convective mixing in the tropics is fairly well simulated, although its north-south extent is overestimated by >5°. The frequency of deep convective mixing also appears to be overestimated in the tropics, resulting in GCTM-calculated upper tropospheric concentrations of carbon monoxide in the tropics that are larger and less variable than those observed. The spatial extent of deep convective mixing in the subtropics is overestimated at several locations including the Caribbean throughout the year and the South Pacific Convergence Zone during June-August. The extent of deep convection is underestimated over midlatitude marine storm tracks. DAS-calculated cloud top pressures differ from ISCCP cloud top pressures by less than one-half a GCTM layer (35 hPa) at most longitudes in the tropics; however, cloud top pressures are overestimated by more than 35 hPa (i.e., the vertical extent of deep convection is underestimated) over wintertime midlatitude storm tracks and the Indian Ocean and underestimated by more than 35 hPa at locations that include the Gulf of Mexico during December-February and central South America during June-August.


Journal of Climate | 2015

Sensitivity of Tropical Cyclones to Parameterized Convection in the NASA GEOS5 Model

Young-Kwon Lim; Siegfried D. Schubert; Oreste Reale; Myong-In Lee; Andrea Molod; Max J. Suarez

AbstractThe sensitivity of tropical cyclones (TCs) to changes in parameterized convection is investigated to improve the simulation of TCs in the North Atlantic. Specifically, the impact of reducing the influence of the Relaxed Arakawa–Schubert (RAS) scheme-based parameterized convection is explored using the Goddard Earth Observing System version 5 (GEOS-5) model at 0.25° horizontal grid spacing. The years 2005 and 2006, characterized by very active and inactive hurricane seasons, respectively, are selected for simulation.A reduction in parameterized deep convection results in an increase in TC activity (e.g., TC number and longer life cycle) to more realistic levels compared to the baseline control configuration. The vertical and horizontal structure of the strongest simulated hurricane shows the maximum wind speed greater than 60 m s−1 and the minimum sea level pressure reaching ~940 mb, which are never achieved by the control configuration. The radius of the maximum wind of ~50 km, the location of the...


Journal of Climate | 2017

Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis

Michael G. Bosilovich; Franklin R. Robertson; Lawrence L. Takacs; Andrea Molod; David Mocko

AbstractClosing and balancing Earth’s global water cycle remains a challenge for the climate community. Observations are limited in duration, global coverage, and frequency, and not all water cycle terms are adequately observed. Reanalyses aim to fill the gaps through the assimilation of as many atmospheric water vapor observations as possible. Former generations of reanalyses have demonstrated a number of systematic problems that have limited their use in climate studies, especially regarding low-frequency trends. This study characterizes the NASA Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) water cycle relative to contemporary reanalyses and observations. MERRA-2 includes measures intended to minimize the spurious global variations related to inhomogeneity in the observational record. The global balance and cycling of water from ocean to land is presented, with special attention given to the water vapor analysis increment and the effects of the changing observing s...

Collaboration


Dive into the Andrea Molod's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence L. Takacs

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max J. Suarez

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke D. Oman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haydee Salmun

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krzysztof Wargan

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge