Andrea Paparini
Murdoch University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Paparini.
International Journal for Parasitology | 2014
Rongchang Yang; Andrea Paparini; Paul Monis; Una Ryan
Clinical microbiology laboratories rely on quantitative PCR for its speed, sensitivity, specificity and ease-of-use. However, quantitative PCR quantitation requires the use of a standard curve or normalisation to reference genes. Droplet digital PCR provides absolute quantitation without the need for calibration curves. A comparison between droplet digital PCR and quantitative PCR-based analyses was conducted for the enteric parasite Cryptosporidium, which is an important cause of gastritis in both humans and animals. Two loci were analysed (18S rRNA and actin) using a range of Cryptosporidium DNA templates, including recombinant plasmids, purified haemocytometer-counted oocysts, commercial flow cytometry-counted oocysts and faecal DNA samples from sheep, cattle and humans. Each method was evaluated for linearity, precision, limit of detection and cost. Across the same range of detection, both methods showed a high degree of linearity and positive correlation for standards (R(2)⩾0.999) and faecal samples (R(2)⩾0.9750). The precision of droplet digital PCR, as measured by mean Relative Standard Deviation (RSD;%), was consistently better compared with quantitative PCR, particularly for the 18S rRNA locus, but was poorer as DNA concentration decreased. The quantitative detection of quantitative PCR was unaffected by DNA concentration, but droplet digital PCR quantitative PCR was less affected by the presence of inhibitors, compared with quantitative PCR. For most templates analysed including Cryptosporidium-positive faecal DNA, the template copy numbers, as determined by droplet digital PCR, were consistently lower than by quantitative PCR. However, the quantitations obtained by quantitative PCR are dependent on the accuracy of the standard curve and when the quantitative PCR data were corrected for pipetting and DNA losses (as determined by droplet digital PCR), then the sensitivity of both methods was comparable. A cost analysis based on 96 samples revealed that the overall cost (consumables and labour) of droplet digital PCR was two times higher than quantitative PCR. Using droplet digital PCR to precisely quantify standard dilutions used for high-throughput and cost-effective amplifications by quantitative PCR would be one way to combine the advantages of the two technologies.
Parasite Immunology | 2016
Una Ryan; Alireza Zahedi; Andrea Paparini
Cryptosporidium is a major cause of moderate‐to‐severe diarrhoea in humans worldwide, second only to rotavirus. Due to the wide host range and environmental persistence of this parasite, cryptosporidiosis can be zoonotic and associated with foodborne and waterborne outbreaks. Currently, 31 species are recognized as valid, and of these, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections in humans. The immune status of the host, both innate and adaptive immunity, has a major impact on the severity of the disease and its prognosis. Immunocompetent individuals typically experience self‐limiting diarrhoea and transient gastroenteritis lasting up to 2 weeks and recover without treatment, suggesting an efficient host antiparasite immune response. Immunocompromised individuals can suffer from intractable diarrhoea, which can be fatal. Effective drug treatments and vaccines are not yet available. As a result of this, the close cooperation and interaction between veterinarians, health physicians, environmental managers and public health operators is essential to properly control this disease. This review focuses on a One Health approach to prophylaxis, including the importance of understanding transmission routes for zoonotic Cryptosporidium species, improved sanitation and better risk management, improved detection, diagnosis and treatment and the prospect of an effective anticryptosporidial vaccine.
International journal for parasitology. Parasites and wildlife | 2016
Alireza Zahedi; Andrea Paparini; Fuchun Jian; I.D. Robertson; Una Ryan
Cryptosporidium is an enteric parasite that is transmitted via the faecal–oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
The Medical Journal of Australia | 2012
Sanjaya N. Senanayake; Andrea Paparini; Maya Latimer; Kerrie Andriolo; Alexandre J. DaSilva; Heather L. Wilson; Maniphet Xayavong; Peter Collignon; Phillip L Jeans; Peter J. Irwin
The Medical Journal of Australia ISSN: 0025729X 19 March 2012 196 5 350-352 ©The Medical Journal of Australia 2012 www.mja.com.au Case reports — notable case infected red blood cells. Re-examination of the b films and recognition that the organisms did not pro hemozoin led to the presumptive diagnosis of babes infection. This was confirmed by Australian and ove experts who viewed electronic files of the slides. patient was then given intravenous quinine (600 m hourly) and clindamycin (600 mg 6-hourly) for bab ospital, rra, ACT.
International Journal of Environmental Health Research | 2007
Giorgio Brandi; Maurizio Sisti; Andrea Paparini; G. Gianfranceschi; Giuditta F. Schiavano; M. De Santi; D. Santoni; V. Magini; V. Romano-Spica
Abstract A growing number of people attend swimming facilities for recreational activities, rehabilitative treatments, or sport. Filamentous fungi and yeast can be isolated from contaminated air, water and surfaces and may represent a biological risk for employees and users. Here we investigated the occurrence of mycotic species, in a sample of Italian swimming pools (n = 10). Detection and identification of isolated species were achieved by cultural and morphological methods. Results revealed moderate mycotic titres and a high biodiversity. Penicillium spp., Aspergillus spp., Cladosporium spp. and Alternaria sp., were constantly detected in air and surfaces sampled by the swimming area, while pathogenic yeast Candida albicans was never detected. Fusarium spp. was the most common taxon isolated from surfaces. For one facility, we typed the genotypic profiles and studied, by genetic typing, the spatial and temporal distribution of isolates. Phylogenetic relationships between species were analysed by alignment of small ribosomal subunit RNA sequences.
Parasites & Vectors | 2015
Alexander W. Gofton; Charlotte L. Oskam; Nathan Lo; Tiziana Beninati; Heng Wei; Victoria McCarl; Dáithí C. Murray; Andrea Paparini; Telleasha L. Greay; Andrew J. Holmes; Michael Bunce; Una Ryan; Peter J. Irwin
BackgroundThe Australian paralysis tick (Ixodes holocyclus) is of significant medical and veterinary importance as a cause of dermatological and neurological disease, yet there is currently limited information about the bacterial communities harboured by these ticks and the risk of infectious disease transmission to humans and domestic animals. Ongoing controversy about the presence of Borrelia burgdorferi sensu lato (the aetiological agent of Lyme disease) in Australia increases the need to accurately identify and characterise bacteria harboured by I. holocyclus ticks.MethodsUniversal PCR primers were used to amplify the V1-2 hyper-variable region of bacterial 16S rRNA genes present in DNA samples from I. holocyclus and I. ricinus ticks, collected in Australia and Germany respectively. The 16S amplicons were purified, sequenced on the Ion Torrent platform, and analysed in USEARCH, QIIME, and BLAST to assign genus and species-level taxonomy. Initial analysis of I. holocyclus and I. ricinus identified that > 95 % of the 16S sequences recovered belonged to the tick intracellular endosymbiont “Candidatus Midichloria mitochondrii” (CMM). A CMM-specific blocking primer was designed that decreased CMM sequences by approximately 96 % in both tick species and significantly increased the total detectable bacterial diversity, allowing identification of medically important bacterial pathogens that were previously masked by CMM.ResultsBorrelia burgdorferi sensu lato was identified in German I. ricinus, but not in Australian I. holocyclus ticks. However, bacteria of medical significance were detected in I. holocyclus ticks, including a Borrelia relapsing fever group sp., Bartonella henselae, novel “Candidatus Neoehrlichia” spp., Clostridium histolyticum, Rickettsia spp., and Leptospira inadai.ConclusionsAbundant bacterial endosymbionts, such as CMM, limit the effectiveness of next-generation 16S bacterial community profiling in arthropods by masking less abundant bacteria, including pathogens. Specific blocking primers that inhibit endosymbiont 16S amplification during PCR are an effective way of reducing this limitation. Here, this strategy provided the first evidence of a relapsing fever Borrelia sp. and of novel “Candidatus Neoehrlichia” spp. in Australia. Our results raise new questions about tick-borne pathogens in I. holocyclus ticks.
Experimental Parasitology | 2012
Andrea Paparini; Una Ryan; Kris Warren; Linda M. McInnes; Paul de Tores; Peter J. Irwin
Piroplasms, which include the genera Theileria and Babesia, are blood-borne parasites transmitted mainly by tick vectors. Relatively little is known about their prevalence and clinical impact in Australian marsupials. In the present study the occurrence and molecular phylogeny of these parasites were studied in both wild and captive marsupials from Western Australia (WA) and Queensland (QLD). Blood samples were screened by microscopy and molecular methods, using PCR and DNA sequencing of the 18S ribosomal RNA gene (18S rDNA). Overall, 7.1% of the blood samples (8/113) were positive for piroplasm 18S rDNA. Theileria and Babesia rDNA was detected in 0.9% (1/113) and 6.2% (7/113) of the animals, respectively. The single Theileria positive was identified in one of three boodies (Bettongia lesueur) screened from a wildlife rehabilitation centre in WA, while all seven Babesia positives were detected in WA in wild captured woylies (Bettongia penicillata ogilbyi). Small intraerythrocytic inclusions were observed in blood films made from six of these individuals. This is the first report of a Babesia sp. in woylies, and Theileria sp. in boodies. Phylogenetic analysis indicated that the woylie-derived Babesia was genetically distinct and most closely related to Babesia occultans, the causative agent of a benign form of cattle babesiosis (genetic similarity 98.4%). The Theileria identified was most closely related to the marsupial-derived species Theileria penicillata from the woylie, Theileria brachyuri from the quokka (Setonix brachyurus), and Theileria sp. from the long-nosed potoroo (Potorous tridactylus).
Veterinary Parasitology | 2011
Andrea Paparini; Peter J. Irwin; Kris Warren; Linda M. McInnes; Paul de Tores; Una Ryan
In the present study, the occurrence and molecular phylogeny of trypanosome parasites were studied in both wild and captive marsupials from Western Australia and Queensland. Blood samples were screened by PCR at the 18S rDNA locus, and the glycosomal glyceraldehyde phosphate dehydrogenase gene. Overall, 5.3% of the blood samples were positive at the 18S rDNA locus. All positives belonged to wild-captured Western Australian individuals, where trypanosome-specific DNA was detected in 9.8% of the screened samples from wild marsupials, in common brushtail possums, and woylies. The detection rate of trypanosome DNA in these two host species was 12.5% and 20%, respectively. Phylogenetic analyses based on two loci, indicated that the possum-derived trypanosome isolates were genetically distinct, and most closely related to the Australian marsupial trypanosomes H25 from a kangaroo, and BRA2 from a bush rat. This is the first study to genetically characterise trypanosome isolates from possums. The analysis of the woylie-derived isolates demonstrated that this marsupial host can harbour multiple genotypes within the same geographical location and furthermore multiple genotypes within the same host, indicative of mixed infections. All the woylie-derived genotypes grouped with trypanosomes found in Australian marsupials, suggesting that they are more likely to belong to an endemic or Australasian trypanosome species. This is the first study to genetically characterise trypanosome isolates from possums (Trichosurus vulpecula). Although the clinical significance of these infections is currently unknown, the identification of these novel sequences may support future investigations on transmission, threats to endangered wildlife, and evolutionary history of the genus Trypanosoma.
Experimental Parasitology | 2015
Una Ryan; Andrea Paparini; Kaising Tong; Rongchang Yang; S. Gibson-Kueh; A.J. O'Hara; A.J. Lymbery; Lihua Xiao
The morphological, biological, and molecular characteristics of Cryptosporidium piscine genotype 1 from the guppy (Poecilia reticulata) are described, and the species name Cryptosporidium huwi n. sp. is proposed to reflect its genetic and biological differences from gastric and intestinal Cryptosporidium species. Oocysts of C.huwi n. sp. over-lap in size with Cryptosporidium molnari, measuring approximately 4.4-4.9 µm (mean 4.6) by 4.0-4.8 µm (mean 4.4 µm) with a length to width ratio of 1.04 (0.92-1.35) (n = 50). Similar to C.molnari, C.huwi n. sp. was identified in the stomach only and clusters of oogonial and sporogonial stages were identified deep within the epithelium. However, phylogenetic analysis of 18S rRNA sequences indicated that C. huwi n. sp. exhibited 8.5-9.2% and 3.5% genetic distance from C.molnari isolates and piscine genotype 7 respectively. At the actin locus, the genetic distance between C.huwi n. sp. and C.molnari was 16.6%. The genetic distance between C.huwi n. sp. and other Cryptosporidium species at the 18S locus was 13.2%-17% and at the actin locus was 18.9%-26.3%. Therefore C. huwi n. sp. is genetically distinct from previously described Cryptosporidium species.
Paparini, A. <http://researchrepository.murdoch.edu.au/view/author/Paparini, Andrea.html> and Romano-Spica, V. (2004) Public health issues related with the consumption of food obtained from genetically modified organisms. Biotechnology Annual Review, 10 . pp. 85-122. | 2004
Andrea Paparini; V. Romano-Spica
Genetically Modified Organisms (GMOs) are a fact of modern agriculture and a major field of discussion in biotechnology. As science incessantly achieves innovative and unexpected breakthroughs, new medical, political, ethical and religious debates arise over the production and consumption of transgenic organisms. Despite no described medical condition being directly associated with a diet including approved GM crops in large exposed populations such as 300,000,000 Americans and a billion Chinese, public opinion seems to look at this new technology with either growing concern or even disapproval. It is generally recognized that a high level of vigilance is necessary and highly desirable, but it should also be considered that GMOs are a promising new challenge for the III Millennium societies, with remarkable impact on many disciplines and fields related to biotechnology. To acquire a basic knowledge on GMO production, GM-food consumption, GMO interaction with humans and environment is of primary importance for risk assessment. It requires availability of clear data and results from rigorous experiments. This review will focus on public health risks related with a GMO-containing diet. The objective is to summarize state of the art research, provide fundamental technical information, point out problems and perspectives, and make available essential tools for further research. Are GMO based industries and GMO-derived foods safe to human health? Can we consider both social, ethical and public health issues by means of a constant and effective monitoring of the food chain and by a clear, informative labeling of the products? Which are the so far characterized or alleged hazards of GMOs? And, most importantly, are these hazards actual, potential or merely contrived? Several questions remain open; answers and solutions belong to science, to politics and to the personal opinion of each social subject.