Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Patrignani is active.

Publication


Featured researches published by Andrea Patrignani.


Journal of The American Society of Nephrology | 2007

Early Aldosterone-Induced Gene Product Regulates the Epithelial Sodium Channel by Deubiquitylation

Panagiotis Fakitsas; Gabriele Adam; Dorothée Daidié; Miguel X. van Bemmelen; Fatemeh Fouladkou; Andrea Patrignani; Ulrich Wagner; Richard Warth; Simone M. R. Camargo; Olivier Staub; François Verrey

The mineralocorticoid hormone aldosterone controls sodium reabsorption and BP largely by regulating the cell-surface expression and function of the epithelial sodium channel (ENaC) in target kidney tubules. Part of the stimulatory effect of aldosterone on ENaC is mediated by the induction of serum- and glucocorticoid-regulated kinase 1 (Sgk1), a kinase that interferes with the ubiquitylation of ENaC by ubiquitin-protein ligase Nedd4-2. In vivo early aldosterone-regulated mRNA now has been identified in microselected mouse distal nephron by microarray. From 22 mRNA that displayed a two-fold or more change, 13 were downregulated and nine were upregulated. Besides Sgk1, the induced mRNA include Grem2 (protein related to DAN and cerebrus [PRDC]), activating transcription factor 3, cAMP responsive element modulator, and the ubiquitin-specific protease Usp2-45. The induction of this last enzyme isoform was verified in mouse distal nephron tubule at the protein level. With the use of Hek293 cells, Xenopus oocytes, and mpkCCD(c14) cells as expression systems, it was shown that Usp2-45 deubiquitylates ENaC and stimulates ENaC-mediated sodium transport, an effect that is not additive to that of Sgk1. A deubiquitylating enzyme that targets ENaC in vitro and thus may play a role in sodium transport regulation was identified within a series of new in vivo early aldosterone-regulated gene products.


Nature Neuroscience | 2014

Circadian behavior is light-reprogrammed by plastic DNA methylation

Abdelhalim Azzi; Robert Dallmann; Alison Casserly; Hubert Rehrauer; Andrea Patrignani; Bert Maier; Achim Kramer; Steven A. Brown

The timing of daily circadian behavior can be highly variable among different individuals, and twin studies have suggested that about half of this variability is environmentally controlled. Similar plasticity can be seen in mice exposed to an altered lighting environment, for example, 22-h instead of 24-h, which stably alters the genetically determined period of circadian behavior for months. The mechanisms mediating these environmental influences are unknown. We found that transient exposure of mice to such lighting stably altered global transcription in the suprachiasmatic nucleus (SCN) of the hypothalamus (the master clock tissue regulating circadian behavior in mammals). In parallel, genome-wide methylation profiling revealed global alterations in promoter DNA methylation in the SCN that correlated with these changes. Behavioral, transcriptional and DNA methylation changes were reversible after prolonged re-entrainment to 24-h d. Notably, infusion of a methyltransferase inhibitor to the SCN suppressed period changes. We conclude that the SCN utilizes DNA methylation as a mechanism to drive circadian clock plasticity.


Cell Metabolism | 2013

Identification of a SIRT1 mutation in a family with type 1 diabetes

Anna Biason-Lauber; Marianne Böni-Schnetzler; Basil P. Hubbard; Karim Bouzakri; Andrea Brunner; Claudia Cavelti-Weder; Cornelia Keller; Monika Meyer-Böni; Daniel Meier; Caroline Brorsson; Katharina Timper; Gil Leibowitz; Andrea Patrignani; Rémy Bruggmann; Gino Boily; Henryk Zulewski; Andreas Geier; Jennifer Cermak; Peter J. Elliott; James L. Ellis; Christoph H. Westphal; Urs Knobel; Jyrki J. Eloranta; Julie Kerr-Conte; François Pattou; Daniel Konrad; Christian M. Matter; Adriano Fontana; Gerhard Rogler; Ralph Schlapbach

Type 1 diabetes is caused by autoimmune-mediated β cell destruction leading to insulin deficiency. The histone deacetylase SIRT1 plays an essential role in modulating several age-related diseases. Here we describe a family carrying a mutation in the SIRT1 gene, in which all five affected members developed an autoimmune disorder: four developed type 1 diabetes, and one developed ulcerative colitis. Initially, a 26-year-old man was diagnosed with the typical features of type 1 diabetes, including lean body mass, autoantibodies, T cell reactivity to β cell antigens, and a rapid dependence on insulin. Direct and exome sequencing identified the presence of a T-to-C exchange in exon 1 of SIRT1, corresponding to a leucine-to-proline mutation at residue 107. Expression of SIRT1-L107P in insulin-producing cells resulted in overproduction of nitric oxide, cytokines, and chemokines. These observations identify a role for SIRT1 in human autoimmunity and unveil a monogenic form of type 1 diabetes.


Plant Physiology | 2010

AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling.

Hubert Rehrauer; Catharine Aquino; Wilhelm Gruissem; Stefan R. Henz; Pierre Hilson; Sascha Laubinger; Naïra Naouar; Andrea Patrignani; Stephane Rombauts; Huan Shu; Yves Van de Peer; Marnik Vuylsteke; Detlef Weigel; Georg Zeller; Lars Hennig

Transcriptome profiling has become a routine tool in biology. For Arabidopsis (Arabidopsis thaliana), the Affymetrix ATH1 expression array is most commonly used, but it lacks about one-third of all annotated genes present in the reference strain. An alternative are tiling arrays, but previous designs have not allowed the simultaneous analysis of both strands on a single array. We introduce AGRONOMICS1, a new Affymetrix Arabidopsis microarray that contains the complete paths of both genome strands, with on average one 25mer probe per 35-bp genome sequence window. In addition, the new AGRONOMICS1 array contains all perfect match probes from the original ATH1 array, allowing for seamless integration of the very large existing ATH1 knowledge base. The AGRONOMICS1 array can be used for diverse functional genomics applications such as reliable expression profiling of more than 30,000 genes, detection of alternative splicing, and chromatin immunoprecipitation coupled to microarrays (ChIP-chip). Here, we describe the design of the array and compare its performance with that of the ATH1 array. We find results from both microarrays to be of similar quality, but AGRONOMICS1 arrays yield robust expression information for many more genes, as expected. Analysis of the ATH1 probes on AGRONOMICS1 arrays produces results that closely mirror those of ATH1 arrays. Finally, the AGRONOMICS1 array is shown to be useful for ChIP-chip experiments. We show that heterochromatic H3K9me2 is strongly confined to the gene body of target genes in euchromatic chromosome regions, suggesting that spreading of heterochromatin is limited outside of pericentromeric regions.


Neuron | 2014

Targeted Combinatorial Alternative Splicing Generates Brain Region-Specific Repertoires of Neurexins

Dietmar Schreiner; Thi-Minh Nguyen; Giancarlo Russo; Steffen Heber; Andrea Patrignani; Erik Ahrné; Peter Scheiffele

Molecular diversity of surface receptors has been hypothesized to provide a mechanism for selective synaptic connectivity. Neurexins are highly diversified receptors that drive the morphological and functional differentiation of synapses. Using a single cDNA sequencing approach, we detected 1,364 unique neurexin-α and 37 neurexin-β mRNAs produced by alternative splicing of neurexin pre-mRNAs. This molecular diversity results from near-exhaustive combinatorial use of alternative splice insertions in Nrxn1α and Nrxn2α. By contrast, Nrxn3α exhibits several highly stereotyped exon selections that incorporate novel elements for posttranscriptional regulation of a subset of transcripts. Complexity of Nrxn1α repertoires correlates with the cellular complexity of neuronal tissues, and a specific subset of isoforms is enriched in a purified cell type. Our analysis defines the molecular diversity of a critical synaptic receptor and provides evidence that neurexin diversity is linked to cellular diversity in the nervous system.


Nucleic Acids Research | 2014

Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations

Francesca Di Giallonardo; Armin Töpfer; Mélanie Rey; Sandhya Prabhakaran; Yannick Duport; Christine Leemann; Stefan Schmutz; Nottania K. Campbell; Beda Joos; Maria Rita Lecca; Andrea Patrignani; Martin Daumer; Christian Beisel; Peter Rusert; Alexandra Trkola; Huldrych F. Günthard; Volker Roth; Niko Beerenwinkel; Karin J. Metzner

Next-generation sequencing (NGS) technologies enable new insights into the diversity of virus populations within their hosts. Diversity estimation is currently restricted to single-nucleotide variants or to local fragments of no more than a few hundred nucleotides defined by the length of sequence reads. To study complex heterogeneous virus populations comprehensively, novel methods are required that allow for complete reconstruction of the individual viral haplotypes. Here, we show that assembly of whole viral genomes of ∼8600 nucleotides length is feasible from mixtures of heterogeneous HIV-1 strains derived from defined combinations of cloned virus strains and from clinical samples of an HIV-1 superinfected individual. Haplotype reconstruction was achieved using optimized experimental protocols and computational methods for amplification, sequencing and assembly. We comparatively assessed the performance of the three NGS platforms 454 Life Sciences/Roche, Illumina and Pacific Biosciences for this task. Our results prove and delineate the feasibility of NGS-based full-length viral haplotype reconstruction and provide new tools for studying evolution and pathogenesis of viruses.


PLOS ONE | 2013

Mutation in the C-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus.

Vanina Dengler; Nadine McCallum; Patrick Kiefer; Philipp Christen; Andrea Patrignani; Julia A. Vorholt; Brigitte Berger-Bächi; Maria Magdalena Senn

Faster growing and more virulent strains of methicillin resistant Staphylococcus aureus (MRSA) are increasingly displacing highly resistant MRSA. Elevated fitness in these MRSA is often accompanied by decreased and heterogeneous levels of methicillin resistance; however, the mechanisms for this phenomenon are not yet fully understood. Whole genome sequencing was used to investigate the genetic basis of this apparent correlation, in an isogenic MRSA strain pair that differed in methicillin resistance levels and fitness, with respect to growth rate. Sequencing revealed only one single nucleotide polymorphism (SNP) in the diadenylate cyclase gene dacA in the faster growing but less resistant strain. Diadenylate cyclases were recently discovered to synthesize the new second messenger cyclic diadenosine monophosphate (c-di-AMP). Introduction of this mutation into the highly resistant but slower growing strain reduced resistance and increased its growth rate, suggesting a direct connection between the dacA mutation and the phenotypic differences of these strains. Quantification of cellular c-di-AMP revealed that the dacA mutation decreased c-di-AMP levels resulting in reduced autolysis, increased salt tolerance and a reduction in the basal expression of the cell wall stress stimulon. These results indicate that c-di-AMP affects cell envelope-related signalling in S. aureus. The influence of c-di-AMP on growth rate and methicillin resistance in MRSA indicate that altering c-di-AMP levels could be a mechanism by which MRSA strains can increase their fitness levels by reducing their methicillin resistance levels.


Biotechnology and Applied Biochemistry | 2006

A preliminary investigation demonstrating the effect of quercetin on the expression of genes related to cell-cycle arrest, apoptosis and xenobiotic metabolism in human CO115 colon-adenocarcinoma cells using DNA microarray.

Imtiyaz Murtaza; Giancarlo Marra; Ralph Schlapbach; Andrea Patrignani; Marzana Künzli; Ulrich Wagner; Jacob Sabates; Amit Dutt

The role of the natural dietary flavonoid chemical quercetin (an antioxidant) in the prevention and treatment of colon cancer is receiving a great deal of attention. However, little is known about the molecular mechanisms of action of this flavonoid. In the present study, whole genome DNA microarrays were used to evaluate the effect of quercetin on gene expression in the CO115 colon‐adenocarcinoma cell line with the completely deleted chromosome 18 harbouring the SMAD4 tumour‐suppressor gene related to colon carcinogenesis. The study demonstrated that quercetin, widely present in fruit and vegetables, inhibited the growth of CO115 cells at 100 μM concentration in both the G1/S and the G2/M phases by modulating cell‐cycle and apoptosis‐related genes. Differential changes in accumulation of transcripts analysed for cells treated with 100 μM quercetin for 24 and 48 h in three independent repeated experiments revealed 5060–7000 differentially expressed genes. This means that quercetin probably does have a broad modulatory effect on gene expression in colon cancer. Out of these differentially expressed genes, the expression of 35 and 23 unique set of genes involved in cell‐cycle control, apoptosis and xenobiotic metabolism were significantly altered after 24 and 48 h quercetin treatment respectively. Our results represent a novel aspect of the biological profile of quercetin that induces cell‐cycle arrest through modulation of cell‐cycle‐related and apoptosis genes. The present study demonstrates a new step in elucidating the underlying molecular mechanisms of the antitumour action of quercetin, which could become a chemopreventive or chemotherapeutic agent for colon cancer.


The FASEB Journal | 2004

Genome-wide analysis of the unfolded protein response in fibroblasts from congenital disorders of glycosylation type-I patients

M. Rita Lecca; Ulrich Wagner; Andrea Patrignani; Eric G. Berger; Thierry Hennet

Congenital disorders of glycosylation (CDG) are a family of diseases characterized by defects of N‐linked glycosylation. In CDG‐I, several genetic defects cause a shortage of dolichol‐linked oligosaccharides, which leads to underglycosylation of nascent glycoproteins. N‐linked glycosylation is important for proper folding and trafficking of glycoproteins. Inhibition of glycosylation results in the buildup of misfolded proteins in the endoplasmic reticulum, which induces a protective reaction known as the unfolded protein response (UPR). To investigate whether UPR components are induced in CDG, we have performed a transcriptome analysis of primary fibroblasts from unaffected control subjects and from CDG‐I patients using oligonucleotide gene expression arrays. The stress imposed by CDG was also compared with the stress induced by tunicamycin and glucose deprivation. Whereas tunicamycin elicited a strong transcriptional response typical for the UPR, CDG fibroblasts displayed a qualitatively similar yet moderate induction of genes encoding components of the UPR. Among these genes, the PERK kinase inhibitor DNAJC3/P58IPK gene showed the highest induction throughout all CDG‐I types tested. This was paralleled by elevated expression of genes involved in amino acid biosynthesis and transport, which defined a new component of the cellular response to glycosylation stress.


Nucleic Acids Research | 2015

New insights into the performance of human whole-exome capture platforms.

Janine Meienberg; Katja Zerjavic; Irene Keller; Michal Okoniewski; Andrea Patrignani; Katja Ludin; Zhenyu Xu; Beat Steinmann; Thierry Carrel; Benno Röthlisberger; Ralph Schlapbach; Rémy Bruggmann; Gabor Matyas

Whole exome sequencing (WES) is increasingly used in research and diagnostics. WES users expect coverage of the entire coding region of known genes as well as sufficient read depth for the covered regions. It is, however, unknown which recent WES platform is most suitable to meet these expectations. We present insights into the performance of the most recent standard exome enrichment platforms from Agilent, NimbleGen and Illumina applied to six different DNA samples by two sequencing vendors per platform. Our results suggest that both Agilent and NimbleGen overall perform better than Illumina and that the high enrichment performance of Agilent is stable among samples and between vendors, whereas NimbleGen is only able to achieve vendor- and sample-specific best exome coverage. Moreover, the recent Agilent platform overall captures more coding exons with sufficient read depth than NimbleGen and Illumina. Due to considerable gaps in effective exome coverage, however, the three platforms cannot capture all known coding exons alone or in combination, requiring improvement. Our data emphasize the importance of evaluation of updated platform versions and suggest that enrichment-free whole genome sequencing can overcome the limitations of WES in sufficiently covering coding exons, especially GC-rich regions, and in characterizing structural variants.

Collaboration


Dive into the Andrea Patrignani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rémy Bruggmann

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beat Steinmann

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge