Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea R. Ottesen is active.

Publication


Featured researches published by Andrea R. Ottesen.


The New England Journal of Medicine | 2011

Identification of a Salmonellosis Outbreak by Means of Molecular Sequencing

Lienau Ek; Errol Strain; Charles Wang; Jie Zheng; Andrea R. Ottesen; Christine E. Keys; Thomas S. Hammack; Steven M. Musser; Eric W. Brown; Marc W. Allard; Guojie Cao; Jianghong Meng; Robert Stones

The complexity of the modern food supply makes identifying foodborne outbreaks difficult. In this report, FDA investigators identify a 44-state outbreak of Salmonella enterica serotype Montevideo, using molecular sequencing.


BMC Microbiology | 2013

Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato).

Andrea R. Ottesen; Antonio González Peña; James R. White; James B. Pettengill; Cong Li; Sarah Allard; Steven L. Rideout; Marc-Antoine Allard; Thomas Hill; Peter Evans; Errol Strain; Steven M. Musser; Rob Knight; Eric R. Brown

BackgroundResearch to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop.ResultsDNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. DNA was amplified for targeted 16S and 18S rRNA genes and sheared for shotgun metagenomic sequencing. Amplicons and metagenomes were used to describe “native” bacterial microflora for diverse anatomical parts of Virginia-grown tomatoes.ConclusionsDistinct groupings of microbial communities were associated with different tomato plant organs and a gradient of compositional similarity could be correlated to the distance of a given plant part from the soil. Unique bacterial phylotypes (at 95% identity) were associated with fruits and flowers of tomato plants. These include Microvirga, Pseudomonas, Sphingomonas, Brachybacterium, Rhizobiales, Paracocccus, Chryseomonas and Microbacterium. The most frequently observed bacterial taxa across aerial plant regions were Pseudomonas and Xanthomonas. Dominant fungal taxa that could be identified to genus with 18S amplicons included Hypocrea, Aureobasidium and Cryptococcus. No definitive presence of Salmonella could be confirmed in any of the plant samples, although 16S sequences suggested that closely related genera were present on leaves, fruits and roots.


BMC Microbiology | 2011

Bacterial community diversity and variation in spray water sources and the tomato fruit surface

Adriana Telias; James R. White; Donna M. Pahl; Andrea R. Ottesen; Christopher S. Walsh

BackgroundTomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production.ResultsThe two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant.ConclusionsDespite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science-based metrics for Good Agricultural Practices.


The Journal of Infectious Diseases | 2016

Tracing Origins of the Salmonella Bareilly Strain Causing a Food-borne Outbreak in the United States.

Maria Hoffmann; Yan Luo; Steven R. Monday; Narjol Gonzalez-Escalona; Andrea R. Ottesen; Tim Muruvanda; Charles Wang; George Kastanis; Christine E. Keys; Daniel Janies; Izzet F. Senturk; Hua Wang; Thomas S. Hammack; William J. Wolfgang; Dianna Schoonmaker-Bopp; Alvina Chu; Robert A. Myers; Julie Haendiges; Peter S. Evans; Jianghong Meng; Errol Strain; Marc W. Allard; Eric W. Brown

BACKGROUND Using a novel combination of whole-genome sequencing (WGS) analysis and geographic metadata, we traced the origins of Salmonella Bareilly isolates collected in 2012 during a widespread food-borne outbreak in the United States associated with scraped tuna imported from India. METHODS Using next-generation sequencing, we sequenced the complete genome of 100 Salmonella Bareilly isolates obtained from patients who consumed contaminated product, from natural sources, and from unrelated historically and geographically disparate foods. Pathogen genomes were linked to geography by projecting the phylogeny on a virtual globe and produced a transmission network. RESULTS Phylogenetic analysis of WGS data revealed a common origin for outbreak strains, indicating that patients in Maryland and New York were infected from sources originating at a facility in India. CONCLUSIONS These data represent the first report fully integrating WGS analysis with geographic mapping and a novel use of transmission networks. Results showed that WGS vastly improves our ability to delimit the scope and source of bacterial food-borne contamination events. Furthermore, these findings reinforce the extraordinary utility that WGS brings to global outbreak investigation as a greatly enhanced approach to protecting the human food supply chain as well as public health in general.


Journal of Food Protection | 2009

Impact of Organic and Conventional Management on the Phyllosphere Microbial Ecology of an Apple Crop

Andrea R. Ottesen; James R. White; Demetra N. Skaltsas; Michael Newell; Christopher S. Walsh

Bacterial communities associated with the phyllosphere of apple trees (Malus domestica cv. Enterprise) grown under organic and conventional management were assessed to determine if increased biological food safety risks might be linked with the bacterial communities associated with either treatment. Libraries of 16S rRNA genes were generated from phyllosphere DNA extracted from a wash made from the surfaces of leaves and apples from replicated organic and conventional treatments. 16S rRNA gene libraries were analyzed with software designed to identify statistically significant differences between bacterial communities as well as shared and unique phylotypes. The identified diversity spanned eight bacterial phyla and 14 classes in the pooled organic and conventional libraries. Significant differences between organic and conventional communities were observed at four of six time points (P < 0.05). Despite the identification of significantly diverse microfloras associated with organic and conventional treatments, no detectable differences in the presence of potential enteric pathogens could be associated with either organic or conventional management. Neither of the bacterial genera most commonly associated with produce-related illness outbreaks (Salmonella and Escherichia) was observed in any of the libraries. The impressive bacterial diversity that was documented in this study provides a valuable contribution to our developing understanding of the total microbial ecology associated with the preharvest phyllospheres of food crops. The fact that organic and conventional phyllosphere bacterial communities were significantly different at numerous time points suggests that crop management methods may influence the bacterial consortia associated with the surfaces of fruits and vegetables.


PeerJ | 2014

An evaluation of alternative methods for constructing phylogenies from whole genome sequence data: a case study with Salmonella

James B. Pettengill; Yan Luo; Steven Davis; Yi Chen; Narjol Gonzalez-Escalona; Andrea R. Ottesen; Hugh Rand; Marc W. Allard; Errol Strain

Comparative genomics based on whole genome sequencing (WGS) is increasingly being applied to investigate questions within evolutionary and molecular biology, as well as questions concerning public health (e.g., pathogen outbreaks). Given the impact that conclusions derived from such analyses may have, we have evaluated the robustness of clustering individuals based on WGS data to three key factors: (1) next-generation sequencing (NGS) platform (HiSeq, MiSeq, IonTorrent, 454, and SOLiD), (2) algorithms used to construct a SNP (single nucleotide polymorphism) matrix (reference-based and reference-free), and (3) phylogenetic inference method (FastTreeMP, GARLI, and RAxML). We carried out these analyses on 194 whole genome sequences representing 107 unique Salmonella enterica subsp. enterica ser. Montevideo strains. Reference-based approaches for identifying SNPs produced trees that were significantly more similar to one another than those produced under the reference-free approach. Topologies inferred using a core matrix (i.e., no missing data) were significantly more discordant than those inferred using a non-core matrix that allows for some missing data. However, allowing for too much missing data likely results in a high false discovery rate of SNPs. When analyzing the same SNP matrix, we observed that the more thorough inference methods implemented in GARLI and RAxML produced more similar topologies than FastTreeMP. Our results also confirm that reproducibility varies among NGS platforms where the MiSeq had the lowest number of pairwise differences among replicate runs. Our investigation into the robustness of clustering patterns illustrates the importance of carefully considering how data from different platforms are combined and analyzed. We found clear differences in the topologies inferred, and certain methods performed significantly better than others for discriminating between the highly clonal organisms investigated here. The methods supported by our results represent a preliminary set of guidelines and a step towards developing validated standards for clustering based on whole genome sequence data.


PLOS ONE | 2013

Co-Enriching Microflora Associated with Culture Based Methods to Detect Salmonella from Tomato Phyllosphere

Andrea R. Ottesen; Antonio Gonzalez; Rebecca L. Bell; Caroline Arce; Steven L. Rideout; Marc W. Allard; Peter Evans; Errol Strain; Steven M. Musser; Rob Knight; Eric W. Brown; James B. Pettengill

The ability to detect a specific organism from a complex environment is vitally important to many fields of public health, including food safety. For example, tomatoes have been implicated numerous times as vehicles of foodborne outbreaks due to strains of Salmonella but few studies have ever recovered Salmonella from a tomato phyllosphere environment. Precision of culturing techniques that target agents associated with outbreaks depend on numerous factors. One important factor to better understand is which species co-enrich during enrichment procedures and how microbial dynamics may impede or enhance detection of target pathogens. We used a shotgun sequence approach to describe taxa associated with samples pre-enrichment and throughout the enrichment steps of the Bacteriological Analytical Manuals (BAM) protocol for detection of Salmonella from environmental tomato samples. Recent work has shown that during efforts to enrich Salmonella (Proteobacteria) from tomato field samples, Firmicute genera are also co-enriched and at least one co-enriching Firmicute genus (Paenibacillus sp.) can inhibit and even kills strains of Salmonella. Here we provide a baseline description of microflora that co-culture during detection efforts and the utility of a bioinformatic approach to detect specific taxa from metagenomic sequence data. We observed that uncultured samples clustered together with distinct taxonomic profiles relative to the three cultured treatments (Universal Pre-enrichment broth (UPB), Tetrathionate (TT), and Rappaport-Vassiliadis (RV)). There was little consistency among samples exposed to the same culturing medias, suggesting significant microbial differences in starting matrices or stochasticity associated with enrichment processes. Interestingly, Paenibacillus sp. (Salmonella inhibitor) was significantly enriched from uncultured to cultured (UPB) samples. Also of interest was the sequence based identification of a number of sequences as Salmonella despite indication by all media, that samples were culture negative for Salmonella. Our results substantiate the nascent utility of metagenomic methods to improve both biological and bioinformatic pathogen detection methods.


Microbial Biotechnology | 2016

Recent and emerging innovations in Salmonella detection: a food and environmental perspective

Rebecca L. Bell; Karen G. Jarvis; Andrea R. Ottesen; Melinda A. McFarland; Eric W. Brown

Salmonella is a diverse genus of Gram‐negative bacilli and a major foodborne pathogen responsible for more than a million illnesses annually in the United States alone. Rapid, reliable detection and identification of this pathogen in food and environmental sources is key to safeguarding the food supply. Traditional microbiological culture techniques have been the ‘gold standard’ for State and Federal regulators. Unfortunately, the time to result is too long to effectively monitor foodstuffs, especially those with very short shelf lives. Advances in traditional microbiology and molecular biology over the past 25 years have greatly improved the speed at which this pathogen is detected. Nonetheless, food and environmental samples possess a distinctive set of challenges for these newer, more rapid methodologies. Furthermore, more detailed identification and subtyping strategies still rely heavily on the availability of a pure isolate. However, major shifts in DNA sequencing technologies are meeting this challenge by advancing the detection, identification and subtyping of Salmonella towards a culture‐independent diagnostic framework. This review will focus on current approaches and state‐of‐the‐art next‐generation advances in the detection, identification and subtyping of Salmonella from food and environmental sources.


BMC Research Notes | 2012

Using metagenomic analyses to estimate the consequences of enrichment bias for pathogen detection

James B. Pettengill; Eugene McAvoy; James R. White; Marc W. Allard; Eric W. Brown; Andrea R. Ottesen

BackgroundEnriching environmental samples to increase the probability of detection has been standard practice throughout the history of microbiology. However, by its very nature, the process of enrichment creates a biased sample that may have unintended consequences for surveillance or resolving a pathogenic outbreak. With the advent of next-generation sequencing and metagenomic approaches, the possibility now exists to quantify enrichment bias at an unprecedented taxonomic breadth.FindingsWe investigated differences in taxonomic profiles of three enriched and unenriched tomato phyllosphere samples taken from three different tomato fields (n = 18). 16S rRNA gene meteganomes were created for each of the 18 samples using 454/Roche’s pyrosequencing platform, resulting in a total of 165,259 sequences. Significantly different taxonomic profiles and abundances at a number of taxonomic levels were observed between the two treatments. Although as many as 28 putative Salmonella sequences were detected in enriched samples, there was no significant difference in the abundance of Salmonella between enriched and unenriched treatments.ConclusionsOur results illustrate that the process of enriching greatly alters the taxonomic profile of an environmental sample beyond that of the target organism. We also found evidence suggesting that enrichment may not increase the probability of detecting a target. In conclusion, our results further emphasize the need to develop metagenomics as a validated culture independent method for pathogen detection.


The ISME Journal | 2010

Population Dynamics of Vibrio spp. Associated with Marine Sponge Microcosms

M. Hoffmann; Markus Fischer; Andrea R. Ottesen; Peter J. McCarthy; Jose V. Lopez; Eric W. Brown; Steven R. Monday

Vibrio is a diverse genus of marine-associated bacteria with at least 74 species and more expected as additional marine ecospheres are interrogated. This report describes a phylogenetic reconstruction of Vibrio isolates derived from one such unique ecosystem, marine sponges (Phylum Porifera) collected from depths of 150 to 1242 feet. 16S rRNA gene sequencing along with molecular typing of 16S–23S rRNA intergenic spacer regions clustered many sponge-associated Vibrio (spp) with current known species. That is, several benthic Vibrio species commensal with Porifera sponges seemed genetically linked to vibrios associated with coastal or shallow-water communities, signalling a panmictic population structure among seemingly ecologically disparate strains. Conversely, phylogenetic analysis provided evidence for at least two novel Vibrio speciation events within this specific sponge microcosm. Collectively, these findings earmark this still relatively unknown environment as a bastion of taxonomic and phylogenetic variability for the genus and probably other bacterial taxa.

Collaboration


Dive into the Andrea R. Ottesen's collaboration.

Top Co-Authors

Avatar

Eric W. Brown

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Reed

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Pettengill

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Marc W. Allard

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Errol Strain

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Karen G. Jarvis

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Sara M. Handy

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Luo

Center for Food Safety and Applied Nutrition

View shared research outputs
Researchain Logo
Decentralizing Knowledge