Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Rossnerova is active.

Publication


Featured researches published by Andrea Rossnerova.


Mutagenesis | 2011

Automated scoring of lymphocyte micronuclei by the MetaSystems Metafer image cytometry system and its application in studies of human mutagen sensitivity and biodosimetry of genotoxin exposure

Andrea Rossnerova; Milada Spatova; Christian Schunck; Radim J. Sram

Automated image analysis scoring of micronuclei (MN) in cells can facilitate the objective and rapid measurement of genetic damage in mammalian and human cells. This approach was repeatedly developed and tested over the past two decades but none of the systems were sufficiently robust for routine analysis of MN until recently. New methodological, hardware and software developments have now allowed more advanced systems to become available. This mini-review presents the current stage of development and validation of the Metasystems Metafer MNScore system for automated image analysis scoring of MN in cytokinesis-blocked binucleated lymphocytes, which is the best-established method for studying MN formation in humans. The results and experience of users of this system from 2004 until today are reviewed in this paper. Significant achievements in the application of this method in research related to mutagen sensitivity phenotype in cancer risk, radiation biodosimetry and biomonitoring studies of air pollution (enriched by new data) are described. Advantages as well as limitations of automated image analysis in comparison with traditional visual analysis are discussed. The current increased use of the Metasystems Metafer MNScore system in various studies and the growing number of publications based on automated image analysis scoring of MN is promising for the ongoing and future application of this approach.


Mutation Research | 2013

Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments.

Andrea Rossnerova; Elena Tulupova; Nana Tabashidze; Jana Schmuczerova; Miroslav Dostal; Pavel Rossner; Hans Gmuender; Radim J. Sram

Gene expression levels are significantly regulated by DNA methylation. Differences in gene expression profiles in the populations from various locations with different environmental conditions were repeatedly observed. In this study we compare the methylation profiles in 200 blood samples of children (aged 7-15 years) with and without bronchial asthma from two regions in the Czech Republic with different levels of air pollution (a highly polluted Ostrava region and a control Prachatice region). Samples were collected in March 2010 when the mean concentrations of benzo[a]pyrene (B[a]P) measured by stationary monitoring were 10.1±2.4ng/m(3) in Ostrava Bartovice (5.6 times higher than in the control region). Significantly higher concentrations of other pollutants (benzene, NO2, respirable air particles and metals) were also found in Ostrava. We applied the Infinium Methylation Assay, using the Human Methylation 27K BeadChip with 27,578 CpG loci for identification of the DNA methylation pattern in studied groups. Results demonstrate a significant impact of different environmental conditions on the DNA methylation patterns of children from the two regions. We found 9916 CpG sites with significantly different methylation (beta value) between children from Ostrava vs. Prachatice from which 58 CpG sites had differences >10%. The methylation of all these 58 CpG sites was lower in children from polluted Ostrava, which indicates a higher gene expression in comparison with the control Prachatice region. We did not find a difference in DNA methylation patterns between children with and without bronchial asthma in individual locations, but patterns in both asthmatics and healthy children differed between Ostrava and Prachatice. Further, we show differences in DNA methylation pattern depending on gender and urinary cotinine levels. Other factors including length of gestation, birth weight and length of full breastfeeding are suggested as possible factors that can impact the DNA methylation pattern in future life.


International Journal of Hygiene and Environmental Health | 2013

HUMN project initiative and review of validation, quality control and prospects for further development of automated micronucleus assays using image cytometry systems

Michael Fenech; Micheline Kirsch-Volders; Andrea Rossnerova; Radim J. Sram; Horst Romm; Claudia Bolognesi; Adarsh Ramakumar; Francoise Soussaline; Christian Schunck; Azeddine Elhajouji; Wagida A. Anwar; Stefano Bonassi

The use of micronucleus (MN) assays in in vitro genetic toxicology testing, radiation biodosimetry and population biomonitoring to study the genotoxic impacts of environment gene-interactions has steadily increased over the past two decades. As a consequence there has been a strong interest in developing automated systems to score micronuclei, a biomarker of chromosome breakage or loss, in mammalian and human cells. This paper summarises the outcomes of a workshop on this topic, organised by the HUMN project, at the 6th International Conference on Environmental Mutagenesis in Human Populations at Doha, Qatar, 2012. The aim of this paper is to summarise the outcomes of the workshop with respect to the set objectives which were: (i) Review current developments in automation of micronucleus assays by image cytometry; (ii) define the performance characteristics of automated MN scoring using image cytometry and methods of assessment for instrument validation and quality control and (iii) discuss the design of inter-laboratory comparisons and standardisation of micronucleus assays using automated image cytometry systems. It is evident that automated scoring of micronuclei by automated image cytometry using different commercially available platforms [e.g. Metafer (MetaSystems), Pathfinder™ (IMSTAR), iCyte(®) (Compucyte)], particularly for lymphocytes, is at a mature stage of development with good agreement between visual and automated scoring across systems (correlation factors ranging from 0.58 to 0.99). However, a standardised system of validation and calibration is required to enable more reliable comparison of data across laboratories and across platforms. This review identifies recent progress, important limitations and steps that need to be taken into account to enable the successful universal implementation of automated micronucleus assays by image cytometry.


International Journal of Hygiene and Environmental Health | 2013

Health impact of air pollution to children.

Radim J. Sram; Blanka Binkova; Miroslav Dostal; Michaela Merkerova-Dostalova; Helena Libalova; Alena Milcova; Pavel Rossner; Andrea Rossnerova; Jana Schmuczerova; Vlasta Svecova; Jan Topinka; Hana Votavova

Health impact of air pollution to children was studied over the last twenty years in heavily polluted parts of the Czech Republic during. The research program (Teplice Program) analyzed these effects in the polluted district Teplice (North Bohemia) and control district Prachatice (Southern Bohemia). Study of pregnancy outcomes for newborns delivered between 1994 and 1998 demonstrated that increase in intrauterine growth retardation (IUGR) was associated with PM10 and c-PAHs exposure (carcinogenic polycyclic aromatic hydrocarbons) in the first month of gestation. Morbidity was followed in the cohort of newborns (N=1492) up to the age of 10years. Coal combustion in homes was associated with increased incidence of lower respiratory track illness and impaired early childhood skeletal growth up to the age of 3years. In preschool children, we observed the effect of increased concentrations of PM2.5 and PAHs on development of bronchitis. The Northern Moravia Region (Silesia) is characterized by high concentrations of c-PAHs due to industrial air pollution. Exposure to B[a]P (benzo[a]pyrene) in Ostrava-Radvanice is the highest in the EU. Children from this part of the city of Ostrava suffered higher incidence of acute respiratory diseases in the first year of life. Gene expression profiles in leukocytes of asthmatic children compared to children without asthma were evaluated in groups from Ostrava-Radvanice and Prachatice. The results suggest the distinct molecular phenotype of asthma bronchiale in children living in polluted Ostrava region compared to children living in Prachatice. The effect of exposure to air pollution to biomarkers in newborns was analyzed in Prague vs. Ceske Budejovice, two locations with different levels of pollution in winter season. B[a]P concentrations were higher in Ceske Budejovice. DNA adducts and micronuclei were also elevated in cord blood in Ceske Budejovice in comparison to Prague. Study of gene expression profiles in the cord blood showed differential expression of 104 genes. Specifically, biological processes related to immune and defense response were down-regulated in Ceske Budejovice. Our studies demonstrate that air pollution significantly affect child health. Especially noticeable is the increase of respiratory morbidity. With the development of molecular epidemiology, we can further evaluate the health risk of air pollution using biomarkers.


Mutation Research | 2009

The impact of air pollution on the levels of micronuclei measured by automated image analysis.

Andrea Rossnerova; Milada Spatova; Pavel Rossner; Ivo Solansky; Radim J. Sram

The measurement of micronuclei (MN) in human peripheral blood lymphocytes is frequently used in molecular epidemiology as one of the preferred methods for assessing chromosomal damage resulting from environmental mutagen exposure. In the present study, we evaluated the effect of exposure to carcinogenic polycyclic aromatic hydrocarbons (c-PAHs), volatile organic compounds (VOC) and smoking on the frequency of MN in a group of 56 city policemen living and working in Prague. The average age of the participants was 34+/-6 years. The study was conducted on the same subjects in February and May 2007. The concentrations of air pollutants were obtained from personal and stationary monitoring. A statistically significant decrease in the levels of pollutants was observed in May when compared with February, with the exception of toluene levels measured by stationary monitoring. The frequency of MN was determined by the automatic image scoring (MetaSystems Metafer 4, version 3.2.1) of DAPI-stained slides. The results of the image analysis indicated a significant difference in the frequency of MN (mean levels 7.32+/-3.42 and 4.67+/-2.92, for February and May, respectively). Our study suggests that automatic image analysis of MN is a highly sensitive method for evaluating the effect of c-PAHs and confirms that there are no differences between smokers and nonsmokers. These results demonstrate the ability of c-PAHs to increase MN frequency, even if the exposure to c-PAHs occurred up to 60 days before the collection of biological material. Our work is the first human biomonitoring study focused on the measurement of MN by automated image analysis for assessing chromosomal damage as a result of environmental mutagen exposure.


Mutation Research | 2011

Factors affecting the frequency of micronuclei in asthmatic and healthy children from Ostrava

Andrea Rossnerova; Milada Spatova; Pavel Rossner; Zuzana Novakova; Ivo Solansky; Radim J. Sram

A higher incidence of asthma is one of the serious problems confronting urban populations worldwide. The aim of the present study was to analyze the effect of age, gender, smoking, vitamin intake, genetic polymorphisms in genes related to the metabolic activation of polycyclic aromatic hydrocarbons (PAHs) and their detoxification and oxidative damage to DNA, lipids and proteins on the frequency of micronuclei (MN) in a group of 175 children (81 with bronchial asthma and 94 healthy controls) aged 6-15 years. The study group from the most polluted region of the Czech Republic, Ostrava, was followed in November 2008, when the mean concentration of benzo[a]pyrene (B[a]P) measured by stationary monitoring was 11.4±9.8ng/m(3). The results of cotinine analysis revealed active smoking in 15 children. The frequency of MN per 1000 binucleated cells (MN/1000 BNC), measured by automated image analysis, indicated a significant risk for smoking children with asthma in comparison with smoking control children (4.25±1.54 and 3.00±0.77, respectively, p<0.05). Girls in the control group had 16% higher levels of MN in comparison with boys. Markers of oxidative damage to DNA, proteins and lipids were not associated with asthma in this study. Higher levels of MN were associated with increased levels of protein carbonyl groups. We conclude that smoking asthmatic children are at higher risk of DNA damage measured as the frequency of micronuclei in peripheral blood lymphocytes.


International Scholarly Research Notices | 2013

The European Hot Spot of B[a]P and PM2.5 Exposure—The Ostrava Region, Czech Republic: Health Research Results

Radim J. Sram; Miroslav Dostal; Helena Libalova; Pavel Rossner; Andrea Rossnerova; Vlasta Svecova; Jan Topinka; Alena Bartonova

The Ostrava Region in the Czech Republic is a heavily polluted industrial area. Concentrations of PM10, PM2.5, and benzo[a]pyrene (B[a]P) significantly exceed limit values. To investigate the impact of these levels on human health, epidemiological, molecular epidemiology, and in vitro studies were done in 2008–2011. Morbidity of children was followed in 10 pediatric districts. In the most polluted district, children suffered higher incidence of acute respiratory diseases in the first year of life, and higher prevalence of asthma bronchiale. Gene expression was studied in children from Ostrava and from a control rural area. Genes specific to asthma bronchiale differed, suggesting a different molecular phenotype in children in the polluted region compared to children in the control area. A molecular epidemiology study showed adverse effect of the Ostrava exposures, but also an increased expression of XRCC5, which probably protects these exposed subjects against the degree of genetic damage that would otherwise be expected. In vitro studies clearly related concentration of B[a]P from PM2.5 extracts to induced PAH-DNA adducts. These studies clearly demonstrate that under the present local environmental conditions, the health of the population is severely impaired and will likely remain so for a significant period of time.


Mutation Research | 2015

Reduced gene expression levels after chronic exposure to high concentrations of air pollutants.

Pavel Rossner; Elena Tulupova; Andrea Rossnerova; Helena Libalova; Katerina Honkova; Hans Gmuender; Anna Pastorkova; Vlasta Svecova; Jan Topinka; Radim J. Sram

We analyzed the ability of particulate matter (PM) and chemicals adsorbed onto it to induce diverse gene expression profiles in subjects living in two regions of the Czech Republic differing in levels and sources of the air pollution. A total of 312 samples from polluted Ostrava region and 154 control samples from Prague were collected in winter 2009, summer 2009 and winter 2010. The highest concentrations of air pollutants were detected in winter 2010 when the subjects were exposed to: PM of aerodynamic diameter <2.5μm (PM2.5) (70 vs. 44.9μg/m(3)); benzo[a]pyrene (9.02 vs. 2.56ng/m(3)) and benzene (10.2 vs. 5.5μg/m(3)) in Ostrava and Prague, respectively. Global gene expression analysis of total RNA extracted from leukocytes was performed using Illumina Expression BeadChips microarrays. The expression of selected genes was verified by quantitative real-time PCR (qRT-PCR). Gene expression profiles differed by locations and seasons. Despite lower concentrations of air pollutants a higher number of differentially expressed genes and affected KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways was found in subjects from Prague. In both locations immune response pathways were affected, in Prague also neurodegenerative diseases-related pathways. Over-representation of the latter pathways was associated with the exposure to PM2.5. The qRT-PCR analysis showed a significant decrease in expression of APEX, ATM, FAS, GSTM1, IL1B and RAD21 in subjects from Ostrava, in a comparison of winter 2010 and summer 2009. In Prague, an increase in gene expression was observed for GADD45A and PTGS2. In conclusion, high concentrations of pollutants in Ostrava were not associated with higher number of differentially expressed genes, affected KEGG pathways and expression levels of selected genes. This observation suggests that chronic exposure to air pollution may result in reduced gene expression response with possible negative health consequences.


PLOS ONE | 2013

Nucleotide excision repair is not induced in human embryonic lung fibroblasts treated with environmental pollutants.

Pavel Rossner; Andrea Mrhalkova; Katerina Uhlirova; Milada Spatova; Andrea Rossnerova; Helena Libalova; Jana Schmuczerova; Alena Milcova; Jan Topinka; Radim J. Sram

The cellular response to genotoxic treatment depends on the cell line used. Although tumor cell lines are widely used for genotoxicity tests, the interpretation of the results may be potentially hampered by changes in cellular processes caused by malignant transformation. In our study we used normal human embryonic lung fibroblasts (HEL12469 cells) and tested their response to treatment with benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5 µm (PM2.5) collected in two Czech cities differing in levels and sources of air pollution. We analyzed multiple endpoints associated with exposure to polycyclic aromatic hydrocarbons (PAHs) including the levels of bulky DNA adducts and the nucleotide excision repair (NER) response [expression of XPE, XPC and XPA genes on the level of mRNA and proteins, unscheduled DNA synthesis (UDS)]. EOMs were collected in the winter and summer of 2011 in two Czech cities with different levels and sources of air pollution. The effects of the studied compounds were analyzed in the presence (+S9) and absence (–S9) of the rat liver microsomal S9 fraction. The levels of bulky DNA adducts were highest after treatment with B[a]P, followed by winter EOMs; their induction by summer EOMs was weak. The induction of both mRNA and protein expression was observed, with the most pronounced effects after treatment with B[a]P (–S9); the response induced by EOMs from both cities and seasons was substantially weaker. The expression of DNA repair genes was not accompanied by the induction of UDS activity. In summary, our results indicate that the tested compounds induced low levels of DNA damage and affected the expression of NER genes; however, nucleotide excision repair was not induced.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2010

Frequency of chromosomal aberrations in Prague mothers and their newborns.

Andrea Rossnerova; I. Balascak; Pavel Rossner; Radim J. Sram

The capital city of Prague is one of the most polluted areas of the Czech Republic. The impact of air pollution on the level of chromosomal aberrations was systematically studied: analyses were performed using fluorescence in situ hybridization (FISH) with whole-chromosome painting for chromosomes #1 and #4. In the present study, we analyzed the levels of stable (one-way and two-way translocations) and unstable (acentric fragments) chromosomal aberrations in 42 mothers living in Prague and in their newborns. The average age of the mothers was 29 years (range, 20-40 years). Blood samples were collected from October 2007 to February 2008. The average levels of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and benzo[a]pyrene (B[a]P) in respirable particles (PM2.5), as determined by stationary monitoring, were 21.0+/-12.3 ng/m(3) and 2.9+/-1.8 ng/m(3), respectively. We did not observe any effect of either c-PAH or B[a]P exposure on the genomic frequency of translocations (per 100 cells, F(G)/100) in either group due to their similar exposure during the winter months. The mean values of F(G)/100 representing stable aberrations were 0.09+/-0.13 vs 0.80+/-0.79 (p<0.001) for newborns vs mothers, indicating a significant increase of F(G)/100 with age. On the other hand, the frequency of unstable aberrations did not differ between the two groups. Our results demonstrate how the patterns of different types of aberration differed between newborns and mothers: we observed 64.3% unstable aberrations and 35.7% stable aberrations in newborns vs 19.7% and 80.3% in mothers, respectively. Our results indicate that after birth the frequencies of aberrations are very low and that the aberrations are represented mainly by acentric fragments. The changes observed in mothers show a shift to stable aberrations represented mainly by two-way translocations. The mothers age affected the level of aberrations in newborns: the group of children born to older mothers (31-40 years) had significantly increased F(G)/100 levels.

Collaboration


Dive into the Andrea Rossnerova's collaboration.

Top Co-Authors

Avatar

Radim J. Sram

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Topinka

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Alena Milcova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Vlasta Svecova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Ivo Solansky

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Milada Spatova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jana Schmuczerova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Helena Libalova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge