Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jana Schmuczerova is active.

Publication


Featured researches published by Jana Schmuczerova.


Mutation Research | 2013

Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments.

Andrea Rossnerova; Elena Tulupova; Nana Tabashidze; Jana Schmuczerova; Miroslav Dostal; Pavel Rossner; Hans Gmuender; Radim J. Sram

Gene expression levels are significantly regulated by DNA methylation. Differences in gene expression profiles in the populations from various locations with different environmental conditions were repeatedly observed. In this study we compare the methylation profiles in 200 blood samples of children (aged 7-15 years) with and without bronchial asthma from two regions in the Czech Republic with different levels of air pollution (a highly polluted Ostrava region and a control Prachatice region). Samples were collected in March 2010 when the mean concentrations of benzo[a]pyrene (B[a]P) measured by stationary monitoring were 10.1±2.4ng/m(3) in Ostrava Bartovice (5.6 times higher than in the control region). Significantly higher concentrations of other pollutants (benzene, NO2, respirable air particles and metals) were also found in Ostrava. We applied the Infinium Methylation Assay, using the Human Methylation 27K BeadChip with 27,578 CpG loci for identification of the DNA methylation pattern in studied groups. Results demonstrate a significant impact of different environmental conditions on the DNA methylation patterns of children from the two regions. We found 9916 CpG sites with significantly different methylation (beta value) between children from Ostrava vs. Prachatice from which 58 CpG sites had differences >10%. The methylation of all these 58 CpG sites was lower in children from polluted Ostrava, which indicates a higher gene expression in comparison with the control Prachatice region. We did not find a difference in DNA methylation patterns between children with and without bronchial asthma in individual locations, but patterns in both asthmatics and healthy children differed between Ostrava and Prachatice. Further, we show differences in DNA methylation pattern depending on gender and urinary cotinine levels. Other factors including length of gestation, birth weight and length of full breastfeeding are suggested as possible factors that can impact the DNA methylation pattern in future life.


International Journal of Hygiene and Environmental Health | 2013

Health impact of air pollution to children.

Radim J. Sram; Blanka Binkova; Miroslav Dostal; Michaela Merkerova-Dostalova; Helena Libalova; Alena Milcova; Pavel Rossner; Andrea Rossnerova; Jana Schmuczerova; Vlasta Svecova; Jan Topinka; Hana Votavova

Health impact of air pollution to children was studied over the last twenty years in heavily polluted parts of the Czech Republic during. The research program (Teplice Program) analyzed these effects in the polluted district Teplice (North Bohemia) and control district Prachatice (Southern Bohemia). Study of pregnancy outcomes for newborns delivered between 1994 and 1998 demonstrated that increase in intrauterine growth retardation (IUGR) was associated with PM10 and c-PAHs exposure (carcinogenic polycyclic aromatic hydrocarbons) in the first month of gestation. Morbidity was followed in the cohort of newborns (N=1492) up to the age of 10years. Coal combustion in homes was associated with increased incidence of lower respiratory track illness and impaired early childhood skeletal growth up to the age of 3years. In preschool children, we observed the effect of increased concentrations of PM2.5 and PAHs on development of bronchitis. The Northern Moravia Region (Silesia) is characterized by high concentrations of c-PAHs due to industrial air pollution. Exposure to B[a]P (benzo[a]pyrene) in Ostrava-Radvanice is the highest in the EU. Children from this part of the city of Ostrava suffered higher incidence of acute respiratory diseases in the first year of life. Gene expression profiles in leukocytes of asthmatic children compared to children without asthma were evaluated in groups from Ostrava-Radvanice and Prachatice. The results suggest the distinct molecular phenotype of asthma bronchiale in children living in polluted Ostrava region compared to children living in Prachatice. The effect of exposure to air pollution to biomarkers in newborns was analyzed in Prague vs. Ceske Budejovice, two locations with different levels of pollution in winter season. B[a]P concentrations were higher in Ceske Budejovice. DNA adducts and micronuclei were also elevated in cord blood in Ceske Budejovice in comparison to Prague. Study of gene expression profiles in the cord blood showed differential expression of 104 genes. Specifically, biological processes related to immune and defense response were down-regulated in Ceske Budejovice. Our studies demonstrate that air pollution significantly affect child health. Especially noticeable is the increase of respiratory morbidity. With the development of molecular epidemiology, we can further evaluate the health risk of air pollution using biomarkers.


Toxicology Letters | 2011

Benzo[a]pyrene and tumor necrosis factor-α coordinately increase genotoxic damage and the production of proinflammatory mediators in alveolar epithelial type II cells

Lenka Umannová; Miroslav Machala; Jan Topinka; Jana Schmuczerova; Pavel Krčmář; Jiří Neča; Klára Šujanová; Alois Kozubík; Jan Vondráček

Alveolar type II epithelial (AEII) cells regulate lung inflammatory response and, simultaneously, they are a target of environmental carcinogenic factors. We employed an in vitro model of rat AEII cells, the RLE-6TN cell line, in order to analyze the interactive effects of tumor necrosis factor-α (TNF-α), a cytokine which plays a key role in the initiation of inflammatory responses in the lung, and benzo[a]pyrene (BaP), a highly carcinogenic polycyclic aromatic hydrocarbon. TNF-α strongly augmented the formation of stable BaP diol epoxide-DNA adducts in AEII cells, which was associated with enhanced p53-Ser15 phosphorylation and decreased cell survival. The increased genotoxicity of BaP was associated with altered expression of cytochrome P450 (CYP) enzymes involved in its bioactivation, a simultaneous suppression of CYP1A1 and enhancement of CYP1B1 expression. Importantly, BaP and TNF-α acted synergistically to upregulate key inflammatory regulators in AEII cells, including the expression of inducible NO synthase and cyclooxygenase-2 (COX-2), and enhanced prostaglandin E2 production and expression of proinflammatory cytokines, such as TNF-α, interleukin-1β and interleukin-6. We observed that BaP and TNF-α together strongly activated p38 kinase, a principal regulator of inflammatory response. SB202190, a specific p38 inhibitor, prevented induction of both COX-2 and proinflammatory cytokines, thus confirming that p38 activity was crucial for the observed inflammatory reaction. Taken together, our data demonstrated, for the first time, that a proinflammatory cytokine and an environmental PAH may interact to potentiate both DNA damage and the inflammatory response in AEII cells, which may occur through coordinated upregulation of p38 activity.


Toxicology Letters | 2012

Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines

Jan Topinka; Alena Milcova; Jana Schmuczerova; Martin Mazac; Martin Pechout; Michal Vojtisek-Lom

The present study was performed to identify possible genotoxicity induced by organic extracts from particulate matter in the exhaust of two typical diesel engines run on diesel fuel and neat heated fuel-grade rapeseed oil: a Cummins ISBe4 engine tested using the World Harmonized Steady State Test Cycle (WHSC) and modified Engine Steady Cycle (ESC) and a Zetor 1505 engine tested using the Non-Road Steady State Cycle (NRSC). In addition, biodiesel B-100 (neat methylester of rapeseed oil) was tested in the Cummins engine run on the modified ESC. Diluted exhaust was sampled with high-volume samplers on Teflon coated filters. Filters were extracted with dichlormethane (DCM) and DNA adduct levels induced by extractable organic matter (EOM) in an acellular assay of calf thymus DNA coupled with (32)P-postlabeling in the presence and absence of rat liver microsomal S9 fraction were employed. Simultaneously, the chemical analysis of 12 priority PAHs in EOM, including 7 carcinogenic PAHs (c-PAHs) was performed. The results suggest that diesel emissions contain substantially more total PAHs than rapeseed oil emissions (for the ESC) or that these concentrations were comparable (for the WHSC and NRSC), while c-PAHs levels were comparable (for the ESC) or significantly higher (for the WHSC and NRSC) for rapeseed oil emissions. DNA adduct levels induced by diesel and rapeseed oil derived EOM were comparable, but consistently slightly higher for diesel than for rapeseed oil. Highly significant correlations were found between 12 priority PAHs concentrations and DNA adduct levels (0.980; p<0.001) and these correlations were even stronger for c-PAHs (0.990; p<0.001). Metabolic activation by the microsomal S9 fraction resulted in several fold higher genotoxicity, suggesting a major contribution of PAHs to genotoxicity. Directly acting compounds, other than c-PAHs, and not requiring S9 to exhibit DNA reactivity were also significant. Generally, DNA adduct levels were more dependent on the type of engine and the test cycle than on the fuel. Our findings suggest that the genotoxicity of particulate emissions from the combustion of rapeseed oil is significant and is comparable to that from the combustion of diesel fuel. A more detailed study is ongoing to verify and extent these preliminary findings.


Toxicology Letters | 2014

Genotoxicity but not the AhR-mediated activity of PAHs is inhibited by other components of complex mixtures of ambient air pollutants.

Helena Libalova; Simona Krčková; Kateřina Uhlířová; Alena Milcova; Jana Schmuczerova; Miroslav Ciganek; Jiri Klema; Miroslav Machala; Radim J. Sram; Jan Topinka

In this study, we compared the genotoxicity and aryl hydrocarbon receptor (AhR)-dependent transcriptional changes of selected target genes in human lung epithelial A549 cells incubated for 24 h, either with extractable organic matter (EOMs) from airborne particles <2.5 μm (PM2.5) collected at four localities from heavily polluted areas of the Czech Republic or two representative toxic polycyclic aromatic hydrocarbons (PAHs) present in EOMs, benzo[a]pyrene (B[a]P) and benzo[k]fluoranthene (B[k]F). Genotoxic effects were determined using DNA adduct analysis or analysis of expression of selected AhR-related genes involved in bioactivation of PAHs (CYP1A1, CYP1B1) and transcriptional repression (TIPARP). Sampled localities differing in the extent and source of air pollution did not exhibit substantially different genotoxicity. DNA adduct levels induced by three subtoxic EOM concentrations were relatively low (1-5 adducts/10(8) nucleotides), compared to levels induced by similar concentrations of B[a]P, while B[k]F gave very low DNA adduct levels. Here, we compared genotoxicity and gene deregulation induced by complex mixtures containing PAHs with the effects of the comparable concentrations of individual PAHs. Our results suggested inhibition of formation of B[a]P-induced DNA adducts compared to individual B[a]P, probably attributable to competitive inhibition by other non-genotoxic EOM components. In contrast, induction of AhR target genes appeared not to be antagonized by the components of complex mixtures, as induction of CYP1A1, CYP1B1 and TIPARP transcripts reached maximum levels induced by PAHs.


Mutagenesis | 2013

Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part I: bulky DNA adducts

Pavel Rossner; Vlasta Svecova; Jana Schmuczerova; Alena Milcova; Nana Tabashidze; Jan Topinka; Anna Pastorkova; Radim J. Sram

The health of human populations living in industrial regions is negatively affected by exposure to environmental air pollutants. In this study, we investigated the impact of air pollution on a cohort of subjects living in Ostrava, a heavily polluted industrial region and compared it with a cohort of individuals from the relatively clean capital city of Prague. This study consisted of three sampling periods differing in the concentrations of major air pollutants (winter 2009, summer 2009 and winter 2010). During all sampling periods, the study subjects from Ostrava region were exposed to significantly higher concentrations of benzo[a]pyrene (B[a]P) and benzene than the subjects in Prague as measured by personal monitors. Pollution by B[a]P, particulate matter of aerodynamic diameter <2.5 µm (PM2.5) and benzene in the Ostrava region measured by stationary monitors was also higher than in Prague, with the exception of PM2.5 in summer 2009 when concentration of the pollutant was significantly elevated in Prague. To evaluate DNA damage in subjects from both locations we determined the levels of bulky DNA adducts in peripheral blood lymphocytes using the (32)P-postlabeling method. Despite higher B[a]P air pollution in the Ostrava region during all sampling periods, the levels of B[a]P-like DNA adducts per 10(8) nucleotides were significantly higher in the Ostrava subjects only in winter 2009 (mean ± SD: 0.21 ± 0.06 versus 0.28 ± 0.08 adducts/10(8) nucleotides, P < 0.001 for Prague and Ostrava subjects, respectively; P < 0.001). During the other two sampling periods, the levels of B[a]P-like DNA adducts were significantly higher in the Prague subjects (P < 0.001). Multivariate analyses conducted among subjects from Ostrava and Prague separately during all sampling periods revealed that exposure to B[a]P and PM2.5 significantly increased levels of B[a]P-like DNA adducts in the Ostrava subjects, but not in subjects from Prague.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2013

Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols.

Jan Topinka; Alena Milcova; Jana Schmuczerova; Jiri Krouzek; Jan Hovorka

Some studies suggest that genotoxic effects of combustion-related aerosols are induced by carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and their derivatives, which are part of the organic fraction of the particulate matter (PM) in ambient air. The proportion of the organic fraction in PM is known to vary with particle size. The ultrafine fraction is hypothesized to be the most important carrier of c-PAHs, since it possesses the highest specific surface area of PM. To test this hypothesis, the distribution of c-PAHs in organic extracts (EOMs) was compared for four size fractions of ambient-air aerosols: coarse (1<dae<10μm), upper (0.5<dae<1μm), and lower (0.17<dae<0.5μm) accumulation aerosol particles and ultrafine particles (dae<0.17). High-volume aerosol samples were collected consecutively in four localities that differed in the level of environmental pollution. The genotoxicity of EOMs was measured by analysis of DNA adducts induced in an a cellular assay consisting of calf thymus DNA with/without rat liver microsomal S9 fraction coupled with (32)P-postlabelling. The upper accumulation fraction was the major size fraction in all four localities, forming 37-46% of the total PM mass. Per m(3) of sampled air, this fraction also bound the largest amount of c-PAHs. Correspondingly, the upper accumulation fraction induced the highest DNA-adduct levels. Per PM mass itself, the lower accumulation fraction is seen to be the most efficient in binding DNA-reactive organic compounds. Interestingly, the results suggest that the fraction of ultrafine particles of various ambient-air samples is neither a major carrier of c-PAHs, nor a major inducer of their genotoxicity, which is an important finding that is relevant to the toxicity and health effects of ultrafine particles, which are so extensively discussed these days.


Toxicology Letters | 2010

An acellular assay to assess the genotoxicity of complex mixtures of organic pollutants bound on size segregated aerosol. Part I: DNA adducts.

Jan Topinka; Jan Hovorka; Alena Milcova; Jana Schmuczerova; Jiri Krouzek; Pavel Rossner; Radim J. Sram

An acellular assay consisting of calf thymus DNA with/without rat liver microsomal S9 fraction was used to study the genotoxicity of complex mixtures of organic air pollutants bound to size segregated aerosols by means of DNA adduct analysis. We compared the genotoxicity of the organic extracts (EOMs) from three size fractions of aerosol ranging from 0.17μm to 10μm that were collected by high volume cascade impactors in four localities of the Czech Republic differing in the extent of the environmental pollution: (1) small village in proximity of a strip mine, (2) highway, (3) city center of Prague and (4) background station. The total DNA adduct levels induced by 100μg/ml of EOMs were analyzed by (32)P-postlabelling analysis with a nuclease P1 method for adduct enrichment. The main finding of the study was most of the observed genotoxicity was connected with a fine particulate matter fraction (<1μm). The concentrations of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) in EOMs indicate that fine fractions (0.5-1μm) bound the highest amount of c-PAHs in all aerosol sampling sites, which might be related to the higher specific surface of this fraction as compared with a course fraction (1-10μm) and higher mass as compared with a condensational fraction (0.17-0.5μm). As for aerosol mass, both fine and condensational fractions are effective carriers of c-PAHs. Similarly, the DNA adduct levels per m(3) of air were highest for the fine fraction, while the condensational fraction (strip mine site and city center) revealed the highest DNA adduct levels in cases where aerosol mass is taken into consideration. A strong correlation was found between the c-PAHs and DNA adduct levels induced by EOMs in all the localities and for various size fractions (R(2)=0.98, p<0.001). It may be concluded that the analysis of total DNA adducts induced in an acellular assay with/without metabolic activation represents a relatively simple method to assess the genotoxic potential of various complex mixtures.


Toxicology | 2013

Inflammatory mediators accelerate metabolism of benzo[a]pyrene in rat alveolar type II cells: The role of enhanced cytochrome P450 1B1 expression

Lenka Šmerdová; Jiří Neča; Jana Svobodová; Jan Topinka; Jana Schmuczerova; Alois Kozubík; Miroslav Machala; Jan Vondráček

Long-term deregulated inflammation represents one of the key factors contributing to lung cancer etiology. Previously, we have observed that tumor necrosis factor-α (TNF-α), a major pro-inflammatory cytokine, enhances genotoxicity of benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon, in rat lung epithelial RLE-6TN cells, a model of alveolar type II cells. Therefore, we analyzed B[a]P metabolism in RLE-6TN cells under inflammatory conditions, simulated using either recombinant TNF-α, or a mixture of inflammatory mediators derived from activated alveolar macrophage cell line. Inflammatory conditions significantly accelerated BaP metabolism, as evidenced by decreased levels of both parent B[a]P and its metabolites. TNF-α altered production of the metabolites associated with dihydrodiol-epoxide and radical cation pathways of B[a]P metabolism, especially B[a]P-dihydrodiols, and B[a]P-diones. We then evaluated the role of cytochrome P450 1B1 (CYP1B1), which is strongly up-regulated in cells treated with B[a]P under inflammatory conditions, in the observed effects. The siRNA-mediated CYP1B1 knock-down increased levels of B[a]P and reduced formation of stable DNA adducts, thus confirming the essential role of CYP1B1 in B[a]P metabolism under inflammatory conditions. TNF-α also reduced expression of aldo-keto reductase 1C14, which may compete with CYP1B1 for B[a]P-7,8-dihydrodiol and divert it from the formation of ultimate B[a]P dihydrodiol epoxide. Together, the present data suggests that the CYP1B1-catalyzed metabolism of polycyclic aromatic hydrocarbons might contribute to their enhanced bioactivation and genotoxic effects under inflammatory conditions.


Mutation Research | 2009

Genetic variability of HVRII mtDNA in cord blood and respiratory morbidity in children

Jana Schmuczerova; R. Brdicka; Miroslav Dostal; Radim J. Sram; Jan Topinka

Genetic polymorphisms were examined using direct sequencing of the hypervariable region II (HVRII) in the D-loop of mtDNA in the cord blood of 355 children living in two areas of the Czech Republic - the industrial district of Teplice and the agricultural district of Prachatice. The incidence of the most frequent nucleotide variants of HVRII, C150T (10.1%), T152C (19.7%), T195C (19.7%) and 309.nC (41.4% for 309.2C and 13.8% for 309.3C), and the respiratory morbidity at the ages of 0-2 years and 2-6 years were investigated, considering many other factors such as locality, gender, ethnicity, heating by coal in household, maternal age, asthma bronchiale, allergic rhinitis, pollinosis, conjunctivitis and maternal tobacco exposure during and after pregnancy. We found that the T195C transversion in HVRII is connected with an increased risk of early childhood (0-2 years) bronchitis (RR 1.38, p=0.034, 95% CI 1.04-1.85) and with increased risk of otitis media in children aged 2-6 years (RR 1.62, p=0.032, 95% CI 1.04-2.53). Another polymorphism, 309.nC, is associated with an increased risk of bronchitis in children aged 2-6 years (RR 1.46, p=0.030, 95% CI 1.04-2.06). The results indicate that genetic polymorphisms in mtDNA may be an important factor not only for various types of cancers and neurodegenerative diseases, but also for respiratory morbidity in children.

Collaboration


Dive into the Jana Schmuczerova's collaboration.

Top Co-Authors

Avatar

Jan Topinka

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Alena Milcova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Radim J. Sram

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Rossnerova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Vlasta Svecova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Vondráček

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Hovorka

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Milada Spatova

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge