Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Sgorbissa is active.

Publication


Featured researches published by Andrea Sgorbissa.


Cell Death & Differentiation | 1998

Proteolytic processing of the adherens junctions components beta-catenin and gamma-catenin/plakoglobin during apoptosis.

Claudio Brancolini; Andrea Sgorbissa; Claudio Schneider

Apoptotic cells undergo specific morphological changes that include loss of cell-cell interactions. Cellular adhesiveness is dependent on members of the cadherin family of adhesion receptors and on the cytoplasmic adaptor proteins α-catenin, β-catenin and γ-catenin/plakoglobin. The caspase family of cystein proteases play a key role during the execution phase of the apoptotic program. These proteolytic enzymes, once activated, cleave cellular proteins which are important for the maintenance of cell integrity. Here we report that γ-catenin is cleaved at different sites during apoptosis in various cell lines. The major apoptotic product of γ-catenin still retains the ability to bind α-catenin but loses the carboxy-terminal region. We also show that γ-catenin is cleaved by caspase-3 in vitro although with lower affinity when compared to PARP or β-catenin. These findings indicate that multiple proteolytic events regulate the dismantling of the cell-cell junctional complexes during apoptosis.


Cancer Research | 2010

Identification of USP18 as an Important Regulator of the Susceptibility to IFN-α and Drug-Induced Apoptosis

Harish Potu; Andrea Sgorbissa; Claudio Brancolini

Gene products that modify the apoptotic susceptibility of cancer cells may offer novel drug response markers or therapeutic targets. In this study, we probed the contribution of 53 different isopeptidases to apoptosis triggered by bortezomib and etoposide. USP18, a type I IFN-induced protein that deconjugates the ubiquitin-like modifier ISG15 from target proteins, was found to limit apoptotic susceptibility to IFN-alpha or bortezomib. Ablating USP18 in cells treated with IFN-alpha increased tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) production; upregulated expression of transcription factors IFN-regulatory factor (IRF)-1, IRF-7, and IRF-9; and promoted the extrinsic pathway of apoptosis. The proapoptotic effects of ablating USP18 were abrogated by FLIP overexpression or TRAIL silencing. However, in bortezomib-treated cells, weak spontaneous signaling from type I IFNs was implicated in the proapoptotic effect of USP18 ablation. Ectopic USP18 repressed apoptotic signaling by IFN-alpha, TRAIL, or bortezomib. Similar effects were produced by a catalytically inactive USP18 mutant, indicating that the antiapoptotic function of USP18 is independent of its catalytic activity. These findings suggest that USP18 may significantly limit operation of the extrinsic apoptotic pathway triggered by type I IFN and drugs.


Apoptosis | 2011

Type i IFNs signaling and apoptosis resistance in glioblastoma cells

Andrea Sgorbissa; Andrea Tomasella; Harish Potu; Ivana Manini; Claudio Brancolini

Deletion of type I IFN genes and resistance to apoptosis induced by type I IFNs are common in glioblastoma. Here we have investigated the importance of the constitutive weak IFN-signaling in the apoptotic response to IFN-α in glioblastoma cells. U87MG cells hold a deletion of type I IFN genes, whereas in T98G cells the spontaneous IFN signaling is intact. In response to IFN-α U87MG cells produce much less TRAIL, while other IFN-inducible genes were efficiently up-regulated. Alterations in TRAIL promoter sequence and activity were not observed. DNA methylation can influence TRAIL transcription but without overt differences between the two cell lines. We also discovered that TRAIL mRNA stability is influenced by IFN-α, but again no differences can be appreciated between the two cell lines. By silencing IFNAR1 we provide evidences that the spontaneous IFN signaling loop is required to sustain elevated levels of TRAIL expression, possibly through the regulation of IRF-1. Despite the presence/absence of the constitutive IFN signaling, both cell lines were resistant to IFN-α induced apoptosis. Targeting the deisgylase USP18 can overcome resistance to IFN-induced apoptosis only in T98G cells. Alterations in elements of the extrinsic apoptotic pathway, such as Bid and c-FLIP contribute to apoptotic resistance of U87MG cells. Down-regulation of USP18 expression together with the induction of ER-stress efficiently restored apoptosis in U87MG cells. Finally, we demonstrated that the BH3-only protein Noxa provides an important contribution in the apoptotic response to ER-stress in USP18 silenced cells.


Molecular and Cellular Biology | 2013

MEF2 is a converging hub for histone deacetylase 4 and phosphatidylinositol 3-kinase/Akt-induced transformation.

Eros Di Giorgio; Andrea Clocchiatti; Sara Piccinin; Andrea Sgorbissa; Giulia Viviani; Paolo Peruzzo; Salvatore Romeo; Sabrina Rossi; Angelo Paolo Dei Tos; Roberta Maestro; Claudio Brancolini

ABSTRACT The MEF2-class IIa histone deacetylase (HDAC) axis operates in several differentiation pathways and in numerous adaptive responses. We show here that nuclear active HDAC4 and HDAC7 display transforming capability. HDAC4 oncogenic potential depends on the repression of a limited set of genes, most of which are MEF2 targets. Genes verified as targets of the MEF2-HDAC axis are also under the influence of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway that affects MEF2 protein stability. A signature of MEF2 target genes identified by this study is recurrently repressed in soft tissue sarcomas. Correlation studies depicted two distinct groups of soft tissue sarcomas: one in which MEF2 repression correlates with PTEN downregulation and a second group in which MEF2 repression correlates with HDAC4 levels. Finally, simultaneous pharmacological inhibition of the PI3K/Akt pathway and of MEF2-HDAC interaction shows additive effects on the transcription of MEF2 target genes and on sarcoma cells proliferation. Overall, our work pinpoints an important role of the MEF2-HDAC class IIa axis in tumorigenesis.


Cytokine & Growth Factor Reviews | 2012

IFNs, ISGylation and cancer: Cui prodest?

Andrea Sgorbissa; Claudio Brancolini

IFNs are cytokines that segregate viral infections, modulate the immune responses and influence tumor cells survival. These options are under the control of ISGs (Interferon Stimulated Genes) which expression is propelled by IFNs. To the ISGs family belong all the components of the molecular machinery that modifies proteins by the addition of the ubiquitin-like protein ISG15, in a process known as ISGylation. Despite alterations in the components of this machinery are frequently observed in cancer, the contribution of ISG15 and of ISGylation to tumor growth and resistance to chemotherapy is unclear and debated. With the aim of elucidating this point, in this review we have discussed about recent data pointing to a dysregulation of the IFN signaling and the ISGylation system in cancer.


Journal of Medicinal Chemistry | 2015

Synthesis, characterization, and optimization for in vivo delivery of a nonselective isopeptidase inhibitor as new antineoplastic agent

Ulma Cersosimo; Andrea Sgorbissa; Carmen Foti; Sara Drioli; Rosario Angelica; Andrea Tomasella; Raffaella Picco; Marta S Semrau; Paola Storici; Fabio Benedetti; Federico Berti; Claudio Brancolini

Bis-arylidenecycloalkanones structurally related to the nonselective isopeptidase inhibitor G5 were synthesized and tested for cytotoxic activity against glioblastoma cells. Cytotoxicities correlate well with Hammett σ constants for substituted arylidene groups, confirming the proposed inhibition mechanism. A new inhibitor (2c) based on the 4-hydroxycyclohexanone scaffold, which favors apoptosis over necrosis, was selected for further development. 2c inhibited representative deubiquitinases with micromolar IC50, and its proapoptotic activity was studied on several cancer cell lines. Inhibitor 2c was conjugated to PEG via dicarbamate and diester linkers. While the dicarbamate was inactive, the diester (2cPE) behaves like a prodrug and is converted into the active species 2c by secreted esterase activities. Finally, 2cPE was also tested in vivo on A549 lung carcinoma xenografts generated in mice. Intravenous treatment with 2cPE led to a significant reduction in primary tumor growth, without appreciable toxicity to mice.


Cancer Biology & Therapy | 2013

The DeISGylase USP18 limits TRAIL-induced apoptosis through the regulation of TRAIL levels: Cellular levels of TRAIL influences responsiveness to TRAIL-induced apoptosis.

Ivana Manini; Andrea Sgorbissa; Harish Potu; Andrea Tomasella; Claudio Brancolini

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising molecule for anti-cancer therapies. Unfortunately, cancer cells frequently acquire resistance to rhTRAIL. Various co-treatments have been proposed to overcome apoptosis resistance to TRAIL. Here we show that downregulation of the deISGylase USP18 sensitizes cancer cells to rhTRAIL, whereas, elevate levels of USP18 inhibit TRAIL-induced apoptosis, in a deISGylase-independent manner. USP18 influences TRAIL signaling through the control of the IFN autocrine loop. In fact, cells with downregulated USP18 expression augment the expression of cellular TRAIL. Downregulation of cellular TRAIL abrogates the synergism between TRAIL and USP18 siRNA and also limits cell death induced by rhTRAIL. By comparing the apoptotic responsiveness to TRAIL in a panel of cancer cell lines, we have discovered a correlation between TRAIL levels and the apoptotic susceptibility to rhTRAIL, In cells expressing high levels of TRAIL-R2 susceptibility to rhTRAIL correlates with TRAIL expression. In conclusion, we propose that cellular TRAIL is an additional factor that can influence the apoptotic response to rhTRAIL.


Journal of Cell Science | 2015

The MEF2-HDAC axis controls proliferation of mammary epithelial cells and acini formation in vitro

Andrea Clocchiatti; Eros Di Giorgio; Giulia Viviani; Charles H. Streuli; Andrea Sgorbissa; Raffaella Picco; Valentina Cutano; Claudio Brancolini

ABSTRACT The myocyte enhancer factor 2 and histone deacetylase (MEF2–HDAC) axis is a master regulator of different developmental programs and adaptive responses in adults. In this paper, we have investigated the contribution of the axis to the regulation of epithelial morphogenesis, using 3D organotypic cultures of MCF10A cells as a model. We have demonstrated that MEF2 transcriptional activity is upregulated during acini formation, which coincides with exit from the proliferative phase. Upregulation of the transcription of MEF2 proteins is coupled to downregulation of HDAC7, which occurs independently from changes in mRNA levels, and proteasome- or autophagy-mediated degradation. During acini formation, the MEF2–HDAC axis contributes to the promotion of cell cycle exit, through the engagement of the CDK inhibitor CDKN1A. Only in proliferating cells can HDAC7 bind to the first intron of the CDKN1A gene, a region characterized by epigenetic markers of active promoters and enhancers. In cells transformed by the oncogene HER2 (ERBB2), acini morphogenesis is altered, MEF2 transcription is repressed and HDAC7 is continuously expressed. Importantly, reactivation of MEF2 transcriptional activity in these cells, through the use of a HER2 inhibitor or by enhancing MEF2 function, corrected the proliferative defect and re-established normal acini morphogenesis. Summary: The HER2 oncogene alters the epithelial morphogenetic program and inhibits MEF2 transcriptional programs. Reactivation of MEF2s re-established normal acini morphogenesis.


Oncotarget | 2016

The isopeptidase inhibitor 2cPE triggers proteotoxic stress and ATM activation in chronic lymphocytic leukemia cells

Andrea Tomasella; Raffaella Picco; Sonia Ciotti; Andrea Sgorbissa; Elisa Bianchi; Rossella Manfredini; Fabio Benedetti; Valentina Trimarco; Federica Frezzato; Livio Trentin; Gianpietro Semenzato; Domenico Delia; Claudio Brancolini

Relapse after treatment is a common and unresolved problem for patients suffering of the B-cell chronic lymphocytic leukemia (B-CLL). Here we investigated the ability of the isopeptidase inhibitor 2cPE to trigger apoptosis in leukemia cells in comparison with bortezomib, another inhibitor of the ubiquitin-proteasome system (UPS). Both inhibitors trigger apoptosis in CLL B cells and gene expression profiles studies denoted how a substantial part of genes up-regulated by these compounds are elements of adaptive responses, aimed to sustain cell survival. 2cPE treatment elicits the up-regulation of chaperones, proteasomal subunits and elements of the anti-oxidant response. Selective inhibition of these responses augments apoptosis in response to 2cPE treatment. We have also observed that the product of the ataxia telangiectasia mutated gene (ATM) is activated in 2cPE treated cells. Stimulation of ATM signaling is possibly dependent on the alteration of the redox homeostasis. Importantly ATM inhibition, mutations or down-modulation increase cell death in response to 2cPE. Overall this work suggests that 2cPE could offer new opportunities for the treatment of B-CLL.


Cell Death and Disease | 2018

The binding landscape of a partially-selective isopeptidase inhibitor with potent pro-death activity, based on the bis(arylidene)cyclohexanone scaffold

Sonia Ciotti; Riccardo Sgarra; Andrea Sgorbissa; Carlotta Penzo; Andrea Tomasella; Federico Casarsa; Fabio Benedetti; Federico Berti; Guidalberto Manfioletti; Claudio Brancolini

Diaryldienone derivatives with accessible β-carbons show strong anti-neoplastic properties, related to their ability to make covalent adducts with free thiols by Michael addition, and low toxicity in vivo. Accumulation of poly-ubiquitylated proteins, activation of the unfolded protein response (UPR) and induction of cell death are universal hallmarks of their activities. These compounds have been characterized as inhibitors of isopeptidases, a family of cysteine-proteases, which de-conjugate ubiquitin and ubiquitin-like proteins from their targets. However, it is unclear whether they can also react with additional proteins. In this work, we utilized the biotin-conjugated diaryldienone-derivative named 2c, as a bait to purify novel cellular targets of these small molecules. Proteomic analyses have unveiled that, in addition to isopeptidases, these inhibitors can form stable covalent adducts with different intracellular proteins, thus potentially impacting on multiple functions of the cells, from cytoskeletal organization to metabolism. These widespread activities can explain the ability of diaryldienone derivatives to efficiently trigger different cell death pathways.

Collaboration


Dive into the Andrea Sgorbissa's collaboration.

Top Co-Authors

Avatar

Claudio Brancolini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge