Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eros Di Giorgio is active.

Publication


Featured researches published by Eros Di Giorgio.


Molecular and Cellular Biology | 2015

The Control Operated by the Cell Cycle Machinery on MEF2 Stability Contributes to the Downregulation of CDKN1A and Entry into S Phase

Eros Di Giorgio; Enrico Gagliostro; Andrea Clocchiatti; Claudio Brancolini

ABSTRACT MEF2s are pleiotropic transcription factors (TFs) which supervise multiple cellular activities. During the cell cycle, MEF2s are activated at the G0/G1 transition to orchestrate the expression of the immediate early genes in response to growth factor stimulation. Here we show that, in human and murine fibroblasts, MEF2 activities are downregulated during late G1. MEF2C and MEF2D interact with the E3 ligase F-box protein SKP2, which mediates their subsequent degradation through the ubiquitin-proteasome system. The cyclin-dependent kinase 4 (CDK4)/cyclin D1 complex phosphorylates MEF2D on serine residues 98 and 110, and phosphorylation of these residues is an important determinant for SKP2 binding. Unscheduled MEF2 transcription during the cell cycle reduces cell proliferation, whereas its containment sustains DNA replication. The CDK inhibitor p21/CDKN1A gene is a MEF2 target gene required to exert this antiproliferative influence. MEF2C and MEF2D bind a region within the first intron of CDKN1A, presenting epigenetic markers of open chromatin. Importantly, H3K27 acetylation within this regulative region depends on the presence of MEF2D. We propose that following the initial engagement in the G0/G1 transition, MEF2C and MEF2D must be polyubiquitylated and degraded during G1 progression to diminish the transcription of the CDKN1A gene, thus favoring entry into S phase.


Molecular and Cellular Biology | 2013

MEF2 is a converging hub for histone deacetylase 4 and phosphatidylinositol 3-kinase/Akt-induced transformation.

Eros Di Giorgio; Andrea Clocchiatti; Sara Piccinin; Andrea Sgorbissa; Giulia Viviani; Paolo Peruzzo; Salvatore Romeo; Sabrina Rossi; Angelo Paolo Dei Tos; Roberta Maestro; Claudio Brancolini

ABSTRACT The MEF2-class IIa histone deacetylase (HDAC) axis operates in several differentiation pathways and in numerous adaptive responses. We show here that nuclear active HDAC4 and HDAC7 display transforming capability. HDAC4 oncogenic potential depends on the repression of a limited set of genes, most of which are MEF2 targets. Genes verified as targets of the MEF2-HDAC axis are also under the influence of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway that affects MEF2 protein stability. A signature of MEF2 target genes identified by this study is recurrently repressed in soft tissue sarcomas. Correlation studies depicted two distinct groups of soft tissue sarcomas: one in which MEF2 repression correlates with PTEN downregulation and a second group in which MEF2 repression correlates with HDAC4 levels. Finally, simultaneous pharmacological inhibition of the PI3K/Akt pathway and of MEF2-HDAC interaction shows additive effects on the transcription of MEF2 target genes and on sarcoma cells proliferation. Overall, our work pinpoints an important role of the MEF2-HDAC class IIa axis in tumorigenesis.


Cellular and Molecular Life Sciences | 2015

Selective class IIa HDAC inhibitors: myth or reality.

Eros Di Giorgio; Enrico Gagliostro; Claudio Brancolini

The prospect of intervening, through the use of a specific molecule, with a cellular alteration responsible for a disease, is a fundamental ambition of biomedical science. Epigenetic-based therapies appear as a remarkable opportunity to impact on several disorders, including cancer. Many efforts have been made to develop small molecules acting as inhibitors of histone deacetylases (HDACs). These enzymes are key targets to reset altered genetic programs and thus to restore normal cellular activities, including drug responsiveness. Several classes of HDAC inhibitors (HDACis) have been generated, characterized and, in certain cases, approved for the use in clinic. A new frontier is the generation of subtype-specific inhibitors, to increase selectivity and to manage general toxicity. Here we will discuss about a set of molecules, which can interfere with the activity of a specific subclass of HDACs: the class IIa.


The FASEB Journal | 2013

Class IIa HDACs repressive activities on MEF2-depedent transcription are associated with poor prognosis of ER+ breast tumors

Andrea Clocchiatti; Eros Di Giorgio; Sabrina Ingrao; Franz-Josef Meyer-Almes; Claudio Tripodo; Claudio Brancolini

MEF2s transcription factors and class IIa HDACs compose a fundamental axis for several differentiation pathways. Functional relationships between this axis and cancer are largely unexplored. We have found that class IIa HDACs are heterogeneously expressed and display redundant activities in breast cancer cells. Applying gene set enrichment analysis to compare the expression profile of a list of putative MEF2 target genes, we have discovered a correlation between the down‐regulation of the MEF2 signature and the aggressiveness of ER+ breast tumors. Kaplan‐Meier analysis in ER+ breast tumors evidenced an association between increased class IIa HDACs expression and reduced survival. The important role of the MEF2‐HDAC axis in ER+ breast cancer was confirmed in cultured cells. MCF7 ER+ cells were susceptible to silencing of class IIa HDACs in terms of both MEF2‐dependent transcription and apoptosis. Conversely, in ER– MDA‐MB‐231 cells, the repressive influence of class IIa HDACs was dispensable. Similarly, a class IIa HDAC‐specific inhibitor preferentially promoted the up‐regulation of several MEF2 target genes and apoptosis in ER+ cell lines. The prosurvival function of class IIa HDACs could be explained by the repression of NR4A1/Nur77, a proapoptotic MEF2 target. In summary, our studies underscore a contribution of class IIa HDACs to aggressiveness of ER+ tumors.—Clocchiatti, A., Di Giorgio, E., Ingrao, S., Meyer‐Almes, F.‐J., Tripodo, C., Brancolini, C. Class IIa HDACs repressive activities on MEF2‐depedent transcription are associated with poor prognosis of ER+ breast tumors. FASEB J. 27, 942–954 (2013). www.fasebj.org


Epigenomics | 2016

Regulation of class IIa HDAC activities: it is not only matter of subcellular localization.

Eros Di Giorgio; Claudio Brancolini

In response to environmental cues, enzymes that influence the functions of proteins, through reversible post-translational modifications supervise the coordination of cell behavior like orchestral conductors. Class IIa histone deacetylases (HDACs) belong to this category. Even though in vertebrates these deacetylases have discarded the core enzymatic activity, class IIa HDACs can assemble into multiprotein complexes devoted to transcriptional reprogramming, including but not limited to epigenetic changes. Class IIa HDACs are subjected to variegated and interconnected layers of regulation, which reflect the wide range of biological responses under the scrutiny of this gene family. Here, we discuss about the key mechanisms that fine tune class IIa HDACs activities.


PLOS Genetics | 2017

The co-existence of transcriptional activator and transcriptional repressor MEF2 complexes influences tumor aggressiveness

Eros Di Giorgio; Elisa Franforte; Sebastiano Cefalù; Sabrina Rossi; Angelo Paolo Dei Tos; Monica Brenca; Maurizio Polano; Roberta Maestro; Harikrishnareddy Paluvai; Raffaella Picco; Claudio Brancolini

The contribution of MEF2 TFs to the tumorigenic process is still mysterious. Here we clarify that MEF2 can support both pro-oncogenic or tumor suppressive activities depending on the interaction with co-activators or co-repressors partners. Through these interactions MEF2 supervise histone modifications associated with gene activation/repression, such as H3K4 methylation and H3K27 acetylation. Critical switches for the generation of a MEF2 repressive environment are class IIa HDACs. In leiomyosarcomas (LMS), this two-faced trait of MEF2 is relevant for tumor aggressiveness. Class IIa HDACs are overexpressed in 22% of LMS, where high levels of MEF2, HDAC4 and HDAC9 inversely correlate with overall survival. The knock out of HDAC9 suppresses the transformed phenotype of LMS cells, by restoring the transcriptional proficiency of some MEF2-target loci. HDAC9 coordinates also the demethylation of H3K4me3 at the promoters of MEF2-target genes. Moreover, we show that class IIa HDACs do not bind all the regulative elements bound by MEF2. Hence, in a cell MEF2-target genes actively transcribed and strongly repressed can coexist. However, these repressed MEF2-targets are poised in terms of chromatin signature. Overall our results candidate class IIa HDACs and HDAC9 in particular, as druggable targets for a therapeutic intervention in LMS.


Journal of Cell Science | 2015

The MEF2-HDAC axis controls proliferation of mammary epithelial cells and acini formation in vitro

Andrea Clocchiatti; Eros Di Giorgio; Giulia Viviani; Charles H. Streuli; Andrea Sgorbissa; Raffaella Picco; Valentina Cutano; Claudio Brancolini

ABSTRACT The myocyte enhancer factor 2 and histone deacetylase (MEF2–HDAC) axis is a master regulator of different developmental programs and adaptive responses in adults. In this paper, we have investigated the contribution of the axis to the regulation of epithelial morphogenesis, using 3D organotypic cultures of MCF10A cells as a model. We have demonstrated that MEF2 transcriptional activity is upregulated during acini formation, which coincides with exit from the proliferative phase. Upregulation of the transcription of MEF2 proteins is coupled to downregulation of HDAC7, which occurs independently from changes in mRNA levels, and proteasome- or autophagy-mediated degradation. During acini formation, the MEF2–HDAC axis contributes to the promotion of cell cycle exit, through the engagement of the CDK inhibitor CDKN1A. Only in proliferating cells can HDAC7 bind to the first intron of the CDKN1A gene, a region characterized by epigenetic markers of active promoters and enhancers. In cells transformed by the oncogene HER2 (ERBB2), acini morphogenesis is altered, MEF2 transcription is repressed and HDAC7 is continuously expressed. Importantly, reactivation of MEF2 transcriptional activity in these cells, through the use of a HER2 inhibitor or by enhancing MEF2 function, corrected the proliferative defect and re-established normal acini morphogenesis. Summary: The HER2 oncogene alters the epithelial morphogenetic program and inhibits MEF2 transcriptional programs. Reactivation of MEF2s re-established normal acini morphogenesis.


Cell Cycle | 2016

Transformation by different oncogenes relies on specific metabolic adaptations

Paolo Peruzzo; Marina Comelli; Eros Di Giorgio; Elisa Franforte; Irene Mavelli; Claudio Brancolini

ABSTRACT Metabolic adaptations are emerging as common traits of cancer cells and tumor progression. In vitro transformation of NIH 3T3 cells allows the analysis of the metabolic changes triggered by a single oncogene. In this work, we have compared the metabolic changes induced by H-RAS and by the nuclear resident mutant of histone deacetylase 4 (HDAC4). RAS-transformed cells exhibit a dominant aerobic glycolytic phenotype characterized by up-regulation of glycolytic enzymes, reduced oxygen consumption and a defect in complex I activity. In this model of transformation, glycolysis is strictly required for sustaining the ATP levels and the robust cellular proliferation. By contrast, in HDAC4/TM transformed cells, glycolysis is only modestly up-regulated, lactate secretion is not augmented and, instead, mitochondrial oxygen consumption is increased. Our results demonstrate that cellular transformation can be accomplished through different metabolic adaptations and HDAC4/TM cells can represent a useful model to investigate oncogene-driven metabolic changes besides the Warburg effect.


Molecular Oncology | 2018

Unscheduled HDAC4 repressive activity in human fibroblasts triggers TP53-dependent senescence and favours cell transformation

Harikrishnareddy Paluvai; Eros Di Giorgio; Claudio Brancolini

Expression of the class IIa HDACs is frequently altered in different human cancers. In mouse models these transcriptional repressors can trigger transformation, acting as bona fide oncogenes. Whether class IIa HDACs also exhibit transforming activities in human cells is currently unknown. We infected primary human fibroblasts with retroviruses to investigate the transforming activity of HDAC4 in cooperation with well‐known oncogenes. We have discovered that HDAC4 triple mutant (S246A, S467A, S632A) (HDAC4‐TM), a nuclear resident version of the deacetylase, triggers TP53 stabilization and OIS (oncogene‐induced senescence). Unlike RAS, HDAC4‐induced OIS was TP53‐dependent and characterized by rapid cell cycle arrest and accumulation of an unusual pattern of γH2AX‐positive foci. The inactivation of both TP53 and of the retinoblastoma (pRb) tumor suppressors, as induced by the viral oncogenes large and small T of SV40, triggers anchorage‐independent growth in RAS, HDAC4‐TM and, to a lesser extent, in HDAC4‐wild type (WT)‐expressing cells. Our results suggest an oncogenic function of class IIa HDACs in human cells, and justify further efforts to discover and evaluate isoform‐specific inhibitors of these epigenetic regulators from a therapeutic perspective.


Biochimica et Biophysica Acta | 2018

MEF2 and the tumorigenic process, hic sunt leones

Eros Di Giorgio; Wayne W. Hancock; Claudio Brancolini

While MEF2 transcription factors are well known to cooperate in orchestrating cell fate and adaptive responses during development and adult life, additional studies over the last decade have identified a wide spectrum of genetic alterations of MEF2 in different cancers. The consequences of these alterations, including triggering and maintaining the tumorigenic process, are not entirely clear. A deeper knowledge of the molecular pathways that regulate MEF2 expression and function, as well as the nature and consequences of MEF2 mutations are necessary to fully understand the many roles of MEF2 in malignant cells. This review discusses the current knowledge of MEF2 transcription factors in cancer.

Collaboration


Dive into the Eros Di Giorgio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles H. Streuli

Wellcome Trust Centre for Cell-Matrix Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge