Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Stenke is active.

Publication


Featured researches published by Andrea Stenke.


Reviews of Geophysics | 2016

Stratospheric Aerosol--Observations, Processes, and Impact on Climate

Stefanie Kremser; Larry W. Thomason; Marc von Hobe; Markus Hermann; Terry Deshler; Claudia Timmreck; Matthew Toohey; Andrea Stenke; Joshua P. Schwarz; R. Weigel; S. Fueglistaler; Fred Prata; Jean-Paul Vernier; Hans Schlager; John E. Barnes; Juan-Carlos Antuña-Marrero; Duncan Fairlie; Mathias Palm; Emmanuel Mahieu; Justus Notholt; Markus Rex; Christine Bingen; Filip Vanhellemont; John M. C. Plane; Daniel Klocke; Simon A. Carn; Lieven Clarisse; Thomas Trickl; Ryan R. Neely; Alexander D. James

Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have been developed for measuring physical aerosol properties with greater accuracy and for characterizing aerosol composition. However, these changes induce challenges to constructing a long-term stratospheric aerosol climatology. Currently, changes in stratospheric aerosol levels less than 20% cannot be confidently quantified. The volcanic signals tend to mask any nonvolcanically driven change, making them difficult to understand. While the role of carbonyl sulfide as a substantial and relatively constant source of stratospheric sulfur has been confirmed by new observations and model simulations, large uncertainties remain with respect to the contribution from anthropogenic sulfur dioxide emissions. New evidence has been provided that stratospheric aerosol can also contain small amounts of nonsulfate matter such as black carbon and organics. Chemistry-climate models have substantially increased in quantity and sophistication. In many models the implementation of stratospheric aerosol processes is coupled to radiation and/or stratospheric chemistry modules to account for relevant feedback processes.


International Journal of Remote Sensing | 2009

Global long-term monitoring of the ozone layer - a prerequisite for predictions

Diego Loyola; R. M. Coldewey-Egbers; Martin Dameris; Hella Garny; Andrea Stenke; M. Van Roozendael; Christophe Lerot; Dimitris Balis; M. E. Koukouli

Although the Montreal Protocol now controls the production and emission of ozone depleting substances, the timing of ozone recovery is unclear. There are many other factors affecting the ozone layer, in particular climate change is expected to modify the speed of re-creation of the ozone layer. Therefore, long-term observations are needed to monitor the further evolution of the stratospheric ozone layer. Measurements from satellite instruments provide global coverage and are supplementary to selective ground-based observations. The combination of data derived from different space-borne instruments is needed to produce homogeneous and consistent long-term data records. They are required for robust investigations including trend analysis. For the first time global total ozone columns from three European satellite sensors GOME (ERS-2), SCIAMACHY (ENVISAT), and GOME-2 (METOP-A) are combined and added up to a continuous time series starting in June 1995. On the one hand it is important to monitor the consequences of the Montreal Protocol and its amendments; on the other hand multi-year observations provide the basis for the evaluation of numerical models describing atmospheric processes, which are also used for prognostic studies to assess the future development. This paper gives some examples of how to use satellite data products to evaluate model results with respective data derived from observations, and to disclose the abilities and deficiencies of atmospheric models. In particular, multi-year mean values derived from the Chemistry-Climate Model E39C-A are used to check climatological values and the respective standard deviations.


Journal of Geophysical Research | 2015

Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol‐chemistry‐climate model predictions and validation

Jian-Xiong Sheng; Debra K. Weisenstein; Beiping Luo; E. Rozanov; Andrea Stenke; J. G. Anet; Heinz Bingemer; Thomas Peter

The global atmospheric sulfur budget and its emission dependence have been investigated using the coupled aerosol-chemistry-climate model SOCOL-AER. The aerosol module comprises gaseous and aqueous sulfur chemistry and comprehensive microphysics. The particle distribution is resolved by 40 size bins spanning radii from 0.39 nm to 3.2 μm, including size-dependent particle composition. Aerosol radiative properties required by the climate model are calculated online from the aerosol module. The model successfully reproduces main features of stratospheric aerosols under nonvolcanic conditions, including aerosol extinctions compared to Stratospheric Aerosol and Gas Experiment II (SAGE II) and Halogen Occultation Experiment, and size distributions compared to in situ measurements. The calculated stratospheric aerosol burden is 109 Gg of sulfur, matching the SAGE II-based estimate (112 Gg). In terms of fluxes through the tropopause, the stratospheric aerosol layer is due to about 43% primary tropospheric aerosol, 28% SO2, 23% carbonyl sulfide (OCS), 4% H2S, and 2% dimethyl sulfide (DMS). Turning off emissions of the short-lived species SO2, H2S, and DMS shows that OCS alone still establishes about 56% of the original stratospheric aerosol burden. Further sensitivity simulations reveal that anticipated increases in anthropogenic SO2 emissions in China and India have a larger influence on stratospheric aerosols than the same increase in Western Europe or the U.S., due to deep convection in the western Pacific region. However, even a doubling of Chinese and Indian emissions is predicted to increase the stratospheric background aerosol burden only by 9%. In contrast, small to moderate volcanic eruptions, such as that of Nabro in 2011, may easily double the stratospheric aerosol loading.


Journal of Geophysical Research | 2014

Multimodel estimates of atmospheric lifetimes of long‐lived ozone‐depleting substances: Present and future

M. P. Chipperfield; Qing Liang; Susan E. Strahan; Olaf Morgenstern; S. Dhomse; N. L. Abraham; A. T. Archibald; Slimane Bekki; Peter Braesicke; G. Di Genova; Eric L. Fleming; Steven C. Hardiman; D. Iachetti; Charles H. Jackman; Douglas E. Kinnison; Marion Marchand; G. Pitari; J. A. Pyle; E. Rozanov; Andrea Stenke; Fiona Tummon

We have diagnosed the lifetimes of long-lived source gases emitted at the surface and removed in the stratosphere using six three-dimensional chemistry-climate models and a two-dimensional model. The models all used the same standard photochemical data. We investigate the effect of different definitions of lifetimes, including running the models with both mixing ratio (MBC) and flux (FBC) boundary conditions. Within the same model, the lifetimes diagnosed by different methods agree very well. Using FBCs versus MBCs leads to a different tracer burden as the implied lifetime contained in the MBC value does not necessarily match a models own calculated lifetime. In general, there are much larger differences in the lifetimes calculated by different models, the main causes of which are variations in the modeled rates of ascent and horizontal mixing in the tropical midlower stratosphere. The model runs have been used to compute instantaneous and steady state lifetimes. For chlorofluorocarbons (CFCs) their atmospheric distribution was far from steady state in their growth phase through to the 1980s, and the diagnosed instantaneous lifetime is accordingly much longer. Following the cessation of emissions, the resulting decay of CFCs is much closer to steady state. For 2100 conditions the model circulation speeds generally increase, but a thicker ozone layer due to recovery and climate change reduces photolysis rates. These effects compensate so the net impact on modeled lifetimes is small. For future assessments of stratospheric ozone, use of FBCs would allow a consistent balance between rate of CFC removal and model circulation rate.


Photochemistry and Photobiology | 2013

Skin Cancer Risks Avoided by the Montreal Protocol—Worldwide Modeling Integrating Coupled Climate-Chemistry Models with a Risk Model for UV

Arjan van Dijk; Harry Slaper; Peter den Outer; Olaf Morgenstern; Peter Braesicke; J. A. Pyle; Hella Garny; Andrea Stenke; Martin Dameris; A. Kazantzidis; K. Tourpali; A. F. Bais

The assessment model for ultraviolet radiation and risk “AMOUR” is applied to output from two chemistry‐climate models (CCMs). Results from the UK Chemistry and Aerosols CCM are used to quantify the worldwide skin cancer risk avoided by the Montreal Protocol and its amendments: by the year 2030, two million cases of skin cancer have been prevented yearly, which is 14% fewer skin cancer cases per year. In the “World Avoided,” excess skin cancer incidence will continue to grow dramatically after 2030. Results from the CCM E39C‐A are used to estimate skin cancer risk that had already been inevitably committed once ozone depletion was recognized: excess incidence will peak mid 21st century and then recover or even super‐recover at the end of the century. When compared with a “No Depletion” scenario, with ozone undepleted and cloud characteristics as in the 1960s throughout, excess incidence (extra yearly cases skin cancer per million people) of the “Full Compliance with Montreal Protocol” scenario is in the ranges: New Zealand: 100–150, Congo: −10–0, Patagonia: 20–50, Western Europe: 30–40, China: 90–120, South‐West USA: 80–110, Mediterranean: 90–100 and North‐East Australia: 170–200. This is up to 4% of total local incidence in the Full Compliance scenario in the peak year.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Emerging role of wetland methane emissions in driving 21st century climate change

Zhen Zhang; Niklaus E. Zimmermann; Andrea Stenke; Xin Li; E. L. Hodson; Gaofeng Zhu; Chunlin Huang; Benjamin Poulter

Significance Conventional greenhouse gas mitigation policies ignore the role of global wetlands in emitting methane (CH4) from feedbacks associated with changing climate. Here we investigate wetland feedbacks and whether, and to what degree, wetlands will exceed anthropogenic 21st century CH4 emissions using an ensemble of climate projections and a biogeochemical methane model with dynamic wetland area and permafrost. Our results reveal an emerging contribution of global wetland CH4 emissions due to processes mainly related to the sensitivity of methane emissions to temperature and changing global wetland area. We highlight that climate-change and wetland CH4 feedbacks to radiative forcing are an important component of climate change and should be represented in policies aiming to mitigate global warming below 2°C. Wetland methane (CH4) emissions are the largest natural source in the global CH4 budget, contributing to roughly one third of total natural and anthropogenic emissions. As the second most important anthropogenic greenhouse gas in the atmosphere after CO2, CH4 is strongly associated with climate feedbacks. However, due to the paucity of data, wetland CH4 feedbacks were not fully assessed in the Intergovernmental Panel on Climate Change Fifth Assessment Report. The degree to which future expansion of wetlands and CH4 emissions will evolve and consequently drive climate feedbacks is thus a question of major concern. Here we present an ensemble estimate of wetland CH4 emissions driven by 38 general circulation models for the 21st century. We find that climate change-induced increases in boreal wetland extent and temperature-driven increases in tropical CH4 emissions will dominate anthropogenic CH4 emissions by 38 to 56% toward the end of the 21st century under the Representative Concentration Pathway (RCP2.6). Depending on scenarios, wetland CH4 feedbacks translate to an increase in additional global mean radiative forcing of 0.04 W·m−2 to 0.19 W·m−2 by the end of the 21st century. Under the “worst-case” RCP8.5 scenario, with no climate mitigation, boreal CH4 emissions are enhanced by 18.05 Tg to 41.69 Tg, due to thawing of inundated areas during the cold season (December to May) and rising temperature, while tropical CH4 emissions accelerate with a total increment of 48.36 Tg to 87.37 Tg by 2099. Our results suggest that climate mitigation policies must consider mitigation of wetland CH4 feedbacks to maintain average global warming below 2 °C.


Geophysical Research Letters | 2015

The changing ozone depletion potential of N2O in a future climate

Laura E. Revell; Fiona Tummon; R. J. Salawitch; Andrea Stenke; T. Peter

Nitrous oxide (N2O), which decomposes in the stratosphere to form nitrogen oxides (NOx), is currently the dominant anthropogenic ozone-depleting substance emitted. Ozone depletion potentials (ODPs) of specific compounds, commonly evaluated for present-day conditions, were developed for long-lived halocarbons and are used by policymakers to inform decision-making around protection of the ozone layer. However, the effect of N2O on ozone will evolve in the future due to changes in stratospheric dynamics and chemistry induced by rising levels of greenhouse gases. Despite the fact that NOx-induced ozone loss slows with increasing concentrations of CO2 and CH4, we show that ODPN2O for year 2100 varies under different scenarios and is mostly larger than ODPN2O for year 2000. This occurs because the traditional ODP approach is tied to ozone depletion induced by CFC-11, which is also sensitive to CO2 and CH4. We therefore suggest that a single ODP for N2O is of limited use.


Earth’s Future | 2015

Decadal reduction of Chinese agriculture after a regional nuclear war

Lili Xia; Alan Robock; Michael J. Mills; Andrea Stenke; Ira Helfand

A regional nuclear war between India and Pakistan could decrease global surface temperature by 1°C–2°C for 5–10 years and have major impacts on precipitation and solar radiation reaching Earths surface. Using a crop simulation model forced by three global climate model simulations, we investigate the impacts on agricultural production in China, the largest grain producer in the world. In the first year after the regional nuclear war, a cooler, drier, and darker environment would reduce annual rice production by 30 megaton (Mt) (29%), maize production by 36 Mt (20%), and wheat production by 23 Mt (53%). With different agriculture management—no irrigation, auto irrigation, 200 kg/ha nitrogen fertilizer, and 10 days delayed planting date—simulated national crop production reduces 16%–26% for rice, 9%–20% for maize, and 32%–43% for wheat during 5 years after the nuclear war event. This reduction of food availability would continue, with gradually decreasing amplitude, for more than a decade. Assuming these impacts are indicative of those in other major grain producers, a nuclear war using much less than 1% of the current global arsenal could produce a global food crisis and put a billion people at risk of famine.


Geophysical Research Letters | 2016

Stratospheric age of air variations between 1600 and 2100

Stefan Muthers; A. Kuchar; Andrea Stenke; Jochen Schmitt; J. G. Anet; Christoph C. Raible; Thomas F. Stocker

The current understanding of preindustrial stratospheric age of air (AoA), its variability, and the potential natural forcing imprint on AoA is very limited. Here we assess the influence of natural and anthropogenic forcings on AoA using ensemble simulations for the period 1600 to 2100 and sensitivity simulations for different forcings. The results show that from 1900 to 2100, CO₂ and ozone-depleting substances are the dominant drivers of AoA variability. With respect to natural forcings, volcanic eruptions cause the largest AoA variations on time scales of several years, reducing the age in the middle and upper stratosphere and increasing the age below. The effect of the solar forcing on AoA is small and dominated by multidecadal total solar irradiance variations, which correlate negatively with AoA. Additionally, a very weak positive relationship driven by ultraviolett variations is found, which is dominant for the 11 year cycle of solar variability.


Aeronautical Journal | 2010

Climate functions for the use in multi-disciplinary optimisation in the pre-design of supersonic business jet

Volker Grewe; Andrea Stenke; Martin Plohr; Vladimir D. Korovkin

Mitigation of climate change is a challenge to science and society. Here, we establish a methodology, applicable in multi-disciplinary optimisation (MDO) during aircraft pre-design, allowing a minimisation of the aircraft’s potential climate impact. In this first step we consider supersonic aircraft flying at a cruise altitude between 45kfeet (~13·5km, 150hPa) and 67kfeet (~20·5km, 50hPa). The methodology is based on climate functions, which give a relationship between 4 parameters representing an aircraft/engine configuration and an expected impact on global mean near surface temperature as an indicator for the impact on climate via changes in the greenhouse gases carbon dioxide, water vapour, ozone and methane. These input parameters are cruise altitude pressure, fuel consumption, fuel flow and Mach number. The climate functions for water vapour and carbon dioxide are independent from the chosen engine, whereas the climate functions for ozone and methane depend on engine parameters describing the nitrogen oxide emissions. Ten engine configurations are taken into account, which were considered in the framework of the EU-project HISAC. An analysis of the reliability of the climate functions with respect to the simplified climatechemistry model AirClim and a detailed analysis of the climate functions is given.

Collaboration


Dive into the Andrea Stenke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Volker Grewe

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas E. Kinnison

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf Morgenstern

National Institute of Water and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge