Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas E. Kinnison is active.

Publication


Featured researches published by Douglas E. Kinnison.


Journal of Geophysical Research | 2006

Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past

Veronika Eyring; Neal Butchart; Darryn W. Waugh; Hideharu Akiyoshi; John Austin; Slimane Bekki; G. E. Bodeker; B. A. Boville; C. Brühl; M. P. Chipperfield; Eugene C. Cordero; Martin Dameris; Makoto Deushi; Vitali E. Fioletov; S. M. Frith; Rolando R. Garcia; Andrew Gettelman; Marco A. Giorgetta; Volker Grewe; L. Jourdain; Douglas E. Kinnison; E. Mancini; Elisa Manzini; Marion Marchand; Daniel R. Marsh; Tatsuya Nagashima; Paul A. Newman; J. E. Nielsen; Steven Pawson; G. Pitari

Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.


Journal of Geophysical Research | 2007

Multimodel projections of stratospheric ozone in the 21st century

Veronika Eyring; Darryn W. Waugh; G. E. Bodeker; Eugene C. Cordero; Hideharu Akiyoshi; John Austin; S. R. Beagley; B. A. Boville; Peter Braesicke; C. Brühl; Neal Butchart; M. P. Chipperfield; Martin Dameris; Rudolf Deckert; Makoto Deushi; S. M. Frith; Rolando R. Garcia; Andrew Gettelman; Marco A. Giorgetta; Douglas E. Kinnison; E. Mancini; Elisa Manzini; Daniel R. Marsh; Sigrun Matthes; Tatsuya Nagashima; Paul A. Newman; J. E. Nielsen; S. Pawson; G. Pitari; David A. Plummer

[1] Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global mean cooling of the stratosphere over the next 5 decades, increasing from around 0.25 K/decade at 50 hPa to around 1 K/ decade at 1 hPa under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. In general, the simulated ozone evolution is mainly determined by decreases in halogen concentrations and continued cooling of the global stratosphere due to increases in greenhouse gases (GHGs). Column ozone is projected to increase as stratospheric halogen concentrations return to 1980s levels. Because of ozone increases in the middle and upper stratosphere due to GHGinduced cooling, total ozone averaged over midlatitudes, outside the polar regions, and globally, is projected to increase to 1980 values between 2035 and 2050 and before lowerstratospheric halogen amounts decrease to 1980 values. In the polar regions the CCMs simulate small temperature trends in the first and second half of the 21st century in midwinter. Differences in stratospheric inorganic chlorine (Cly) among the CCMs are key to diagnosing the intermodel differences in simulated ozone recovery, in particular in the Antarctic. It is found that there are substantial quantitative differences in the simulated Cly, with the October mean Antarctic Cly peak value varying from less than 2 ppb to over 3.5 ppb in the CCMs, and the date at which the Cly returns to 1980 values varying from before 2030 to after 2050. There is a similar variation in the timing of recovery of Antarctic springtime column ozone back to 1980 values. As most models underestimate peak Clynear 2000, ozone recovery in the Antarctic could occur even later, between 2060 and 2070. In the Arctic the column ozone increase in spring does not follow halogen decreases as closely as in the Antarctic, reaching 1980 values before Arctic halogen amounts decrease


Science | 2008

The Impact of Stratospheric Ozone Recovery on the Southern Hemisphere Westerly Jet

Seok-Woo Son; Lorenzo M. Polvani; Darryn W. Waugh; Hideharu Akiyoshi; Rolando R. Garcia; Douglas E. Kinnison; S. Pawson; E. Rozanov; Theodore G. Shepherd; Kiyotaka Shibata

In the past several decades, the tropospheric westerly winds in the Southern Hemisphere have been observed to accelerate on the poleward side of the surface wind maximum. This has been attributed to the combined anthropogenic effects of increasing greenhouse gases and decreasing stratospheric ozone and is predicted to continue by the Intergovernmental Panel on Climate Change/Fourth Assessment Report (IPCC/AR4) models. In this paper, the predictions of the Chemistry-Climate Model Validation (CCMVal) models are examined: Unlike the AR4 models, the CCMVal models have a fully interactive stratospheric chemistry. Owing to the expected disappearance of the ozone hole in the first half of the 21st century, the CCMVal models predict that the tropospheric westerlies in Southern Hemisphere summer will be decelerated, on the poleward side, in contrast with the prediction of most IPCC/AR4 models.


Journal of Geophysical Research | 2007

Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing

Daniel R. Marsh; Rolando R. Garcia; Douglas E. Kinnison; B. A. Boville; Fabrizio Sassi; Stanley C. Solomon; Katja Matthes

The NCAR Whole Atmosphere Community Climate Model, version 3 (WACCM3), is used to study the atmospheric response from the surface to the lower thermosphere to changes in solar and geomagnetic forcing over the 11-year solar cycle. WACCM3 is a general circulation model that incorporates interactive chemistry that solves for both neutral and ion species. Energy inputs include solar radiation and energetic particles, which vary significantly over the solar cycle. This paper presents a comparison of simulations for solar cycle maximum and solar cycle minimum conditions. Changes in composition and dynamical variables are clearly seen in the middle and upper atmosphere, and these in turn affect terms in the energy budget. Generally good agreement is found between the model response and that derived from satellite observations, although significant differences remain. A small but statistically significant response is predicted in tropospheric winds and temperatures which is consistent with signals observed in reanalysis data sets.


Journal of Climate | 2010

Chemistry-climate model simulations of twenty-first century stratospheric climate and circulation changes

Neal Butchart; Irene Cionni; Veronika Eyring; Theodore G. Shepherd; Darryn W. Waugh; Hideharu Akiyoshi; J. Austin; C. Brühl; M. P. Chipperfield; Eugene C. Cordero; Martin Dameris; Rudolf Deckert; S. Dhomse; S. M. Frith; Rolando R. Garcia; Andrew Gettelman; Marco A. Giorgetta; Douglas E. Kinnison; Feng Li; E. Mancini; Charles McLandress; Steven Pawson; G. Pitari; David A. Plummer; E. Rozanov; F. Sassi; J. F. Scinocca; K. Shibata; B. Steil; Wenshou Tian

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 6 0.07 K decade 21 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade 21 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twentyfirst century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson


Journal of Geophysical Research | 2008

Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations

M. J. Alexander; John C. Gille; Charles Cavanaugh; M. T. Coffey; Cheryl Craig; Thomas Eden; Gene Francis; Chris Halvorson; James W. Hannigan; Rashid Khosravi; Douglas E. Kinnison; Hyunah Lee; S. T. Massie; B. Nardi; John J. Barnett; Christopher L. Hepplewhite; Alyn Lambert; V. C. Dean

analyzed to derive global properties of gravity waves. We describe a wavelet analysis technique that determines covarying wave temperature amplitude in adjacent temperature profile pairs, the wave vertical wavelength as a function of height, and the horizontal wave number along the line joining each profile pair. The analysis allows a local estimate of the magnitude of gravity wave momentum flux as a function of geographic location and height on a daily basis. We examine global distributions of these gravity wave properties in the monthly mean and on an individual day, and we also show sample instantaneous wave events observed by HIRDLS. The results are discussed in terms of previous satellite and radiosonde observational analyses and middle atmosphere general circulation model studies that parameterize gravity wave effects on the mean flow. The high vertical and horizontal resolution afforded by the HIRDLS measurements allows the analysis of a wider range of wave vertical and horizontal wavelengths than previous studies and begins to show individual wave events associated with mountains and convection in high detail. Mountain wave observations show clear propagation to altitudes in the mesosphere.


Journal of Geophysical Research | 2010

Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends

Andrew Gettelman; M. I. Hegglin; Say-Jin Son; Jung-Hyun Kim; Masatomo Fujiwara; Thomas Birner; Stefanie Kremser; Markus Rex; Juan A. Añel; Hideharu Akiyoshi; John Austin; Slimane Bekki; P. Braesike; C. Brühl; Neal Butchart; M. P. Chipperfield; Martin Dameris; S. Dhomse; Hella Garny; Steven C. Hardiman; Patrick Jöckel; Douglas E. Kinnison; Jean-Francois Lamarque; E. Mancini; Marion Marchand; M. Michou; Olaf Morgenstern; Steven Pawson; G. Pitari; David A. Plummer

The performance of 18 coupled Chemistry Climate Models (CCMs) in the Tropical Tropopause Layer (TTL) is evaluated using qualitative and quantitative diagnostics. Trends in tropopause quantities in the tropics and the extratropical Upper Troposphere and Lower Stratosphere (UTLS) are analyzed. A quantitative grading methodology for evaluating CCMs is extended to include variability and used to develop four different grades for tropical tropopause temperature and pressure, water vapor and ozone. Four of the 18 models and the multi‐model mean meet quantitative and qualitative standards for reproducing key processes in the TTL. Several diagnostics are performed on a subset of the models analyzing the Tropopause Inversion Layer (TIL), Lagrangian cold point and TTL transit time. Historical decreases in tropical tropopause pressure and decreases in water vapor are simulated, lending confidence to future projections. The models simulate continued decreases in tropopause pressure in the 21st century, along with ∼1K increases per century in cold point tropopause temperature and 0.5–1 ppmv per century increases in water vapor above the tropical tropopause. TTL water vapor increases below the cold point. In two models, these trends are associated with 35% increases in TTL cloud fraction. These changes indicate significant perturbations to TTL processes, specifically to deep convective heating and humidity transport. Ozone in the extratropical lowermost stratosphere has significant and hemispheric asymmetric trends. O3 is projected to increase by nearly 30% due to ozone recovery in the Southern Hemisphere (SH) and due to enhancements in the stratospheric circulation. These UTLS ozone trends may have significant effects in the TTL and the troposphere.


Journal of Geophysical Research | 2001

Effects of aerosols on tropospheric oxidants: A global model study

Xuexi Tie; Guy P. Brasseur; Louisa Kent Emmons; Larry W. Horowitz; Douglas E. Kinnison

The global distributions of sulfate and soot particles in the atmosphere are calculated, and the effect of aerosol particles on tropospheric oxidants is studied using a global chemical/transport/aerosol model. The model is developed in the framework of the National Center for Atmospheric Research (NCAR) global three-dimensional chemical/transport model (Model for Ozone and Related Chemical Tracers (MOZART)). In addition to the gas-phase photochemistry implemented in the MOZART model, the present study also accounts for the formation of sulfate and black carbon aerosols as well as for heterogeneous reactions on particles. The simulated global sulfate aerosol distributions and seasonal variation are compared with observations. The seasonal variation of sulfate aerosols is in agreement with measurements, except in the Arctic region. The calculated vertical profiles of sulfate aerosol agree well with the observations over North America. In the case of black carbon the calculated surface distribution is in fair agreement with observations. The effects of aerosol formation and heterogeneous reactions on the surface of sulfate aerosols are studied. The model calculations show the following: (1) The concentration of H2O2 is reduced when sulfate aerosols are formed due to the reaction of SO2 + H2O2 in cloud droplets. The gas-phase reaction SO2 + OH converts OH to HO2, but the reduction of OH and enhancement of HO2 are insignificant (<3%). (2) The heterogeneous reaction of HO2 on the surface of sulfate aerosols produces up to 10% reduction of hydroperoxyl radical (HO2) with an uptake coefficient of 0.2. However, this uptake coefficient could be overestimated, and the results should be regard as an upper limit estimation. (3) The N2O5 reaction on the surface of sulfate aerosols leads to an 80% reduction of NOx at middle to high latitudes during winter. Because ozone production efficiency is low in winter, ozone decreases by only 10% as a result of this reaction. However, during summer the N2O5 reaction reduces NOx by 15% and O3 by 8–10% at middle to high latitudes. (4) The heterogeneous reaction of CH2O on sulfate aerosols with an upper limit uptake coefficient (γ = 0.01) leads to an 80 to 90% decrease in CH2O and 8 to 10% reduction of HO2 at middle to high latitudes during winter. Many uncertainties remain in our understanding of heterogeneous chemical processes and in the estimate of kinetic parameters. This model study should therefore be regarded as exploratory and subject to further improvements before final conclusions can be made.


Journal of Geophysical Research | 2010

Review of the formulation of present‐generation stratospheric chemistry‐climate models and associated external forcings

Olaf Morgenstern; Marco A. Giorgetta; Kiyotaka Shibata; Veronika Eyring; Darryn W. Waugh; Theodore G. Shepherd; Hideharu Akiyoshi; J. Austin; A. J. G. Baumgaertner; Slimane Bekki; Peter Braesicke; C. Brühl; M. P. Chipperfield; David Cugnet; Martin Dameris; S. Dhomse; S. M. Frith; Hella Garny; Andrew Gettelman; Steven C. Hardiman; M. I. Hegglin; Patrick Jöckel; Douglas E. Kinnison; Jean-Francois Lamarque; E. Mancini; Elisa Manzini; Marion Marchand; M. Michou; Tetsu Nakamura; J. E. Nielsen

The goal of the Chemistry-Climate Model Validation (CCMVal) activity is to improve understanding of chemistry-climate models (CCMs) through process-oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozone-depleting substances, and hence for understanding the ozone and climate forecasts produced by the models participating in this activity. Here we introduce and review the models used for the second round (CCMVal-2) of this intercomparison, regarding the implementation of chemical, transport, radiative, and dynamical processes in these models. In particular, we review the advantages and problems associated with approaches used to model processes of relevance to stratospheric dynamics and chemistry. Furthermore, we state the definitions of the reference simulations performed, and describe the forcing data used in these simulations. We identify some developments in chemistry-climate modeling that make models more physically based or more comprehensive, including the introduction of an interactive ocean, online photolysis, troposphere-stratosphere chemistry, and non-orographic gravity-wave deposition as linked to tropospheric convection. The relatively new developments indicate that stratospheric CCM modeling is becoming more consistent with our physically based understanding of the atmosphere.


Journal of Geophysical Research | 1994

The chemical and radiative effects of the Mount Pinatubo eruption

Douglas E. Kinnison; Keith E. Grant; Peter S. Connell; Douglas A. Rotman; Donald J. Wuebbles

The eruption of Mount Pinatubo introduced large amounts of sulfur-containing particles into the stratosphere. Stratospheric ozone measured by ozonesondes and satellites is significantly lower following the June 1991 eruption and throughout 1992 and 1993. To clarify the mechanisms leading to effects on stratospheric ozone, time-dependent stratospheric aerosol and gas experiment II (SAGE II) and cryogenic limb array elaton spectrometer (CLAES) aerosol optical extinction data and SAGE II surface area density are used as parameters in a two-dimensional (2-D) zonally averaged chemical radiative transport model. The model was integrated with time from before the eruption through December 1993. The modeled impact on global ozone results from increased rates of heterogeneous reactions on sulfate aerosols and from the increased radiative heating and scattering caused by these aerosols. The models dynamical response to changes in forcing (from changes in radiatively active trace gas concentrations and from aerosol heating) is treated in one of three ways: (1) the stratospheric temperature is perturbed, with fixed seasonal circulation, (2) the circulation is perturbed, with fixed seasonal temperature, or (3) both circulation and temperature are unperturbed, when investigating only the impact of Mount Pinatubo increased aerosol surface area density (SAD) and aerosol scattering of actinic solar radiation, When the aerosol heating is allowed to modify the temperature distribution, the maximum change calculated in equatorial column ozone is −1.6%. The calculated equatorial temperature change and peak local ozone change in October 1991 are +6 K and −4%, respectively. When aerosol heating perturbs the circulation in the model, the maximum change in equatorial column ozone is −6%. Increased heterogeneous processing on sulfate aerosols is calculated to have changed equatorial column ozone in late 1991 by −1.5%. Global column ozone in the model in 1992 and 1993 changed by −2.8% and −2.4%, respectively. The relationship of ozone-controlling processes in the lower stratosphere is altered as well; HOx becomes the most important catalytic cycle, followed by ClOx and NOx. This is driven by significant changes in trace gas concentrations. In October 1991, lower stratospheric, equatorial NOx decreased by 40%, ClOx increased by 60%, and HOx increased by 25%. When the effect of heterogeneous chemical processing on sulfate aerosols is combined with aerosol heating, modifying either circulation or temperature, dramatically different ozone fingerprints with time and latitude are predicted. Model-derived changes in the equatorial region in column ozone best represented the observed data when perturbed circulation was combined with heterogeneous chemical effects. However, at high latitudes, the increased ozone production from the strengthening of the mean circulation tends to cancel the heterogeneous reduction of ozone. This is not in good agreement with observed data, especially in 1992 and 1993. When the circulation is held fixed and the temperature allowed to change, and heterogeneous chemical effects are included, the equatorial ozone decrease predicted was too small for 1991. However, the mid- to high-latitude decrease in 1992 and 1993 is in better agreement with observed data.

Collaboration


Dive into the Douglas E. Kinnison's collaboration.

Top Co-Authors

Avatar

Jean-Francois Lamarque

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Rolando R. Garcia

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Simone Tilmes

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Gettelman

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Hideharu Akiyoshi

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel R. Marsh

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

William J. Randel

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Olaf Morgenstern

National Institute of Water and Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge