Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Brodehl is active.

Publication


Featured researches published by Andreas Brodehl.


Human Molecular Genetics | 2010

De novo desmin mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy

Baerbel Klauke; Sabine Kossmann; Anna Gaertner; Kristina Brand; Ines Stork; Andreas Brodehl; Mareike Dieding; Volker Walhorn; Dario Anselmetti; Désirée Gerdes; B. Bohms; Uwe Schulz; Edzard zu Knyphausen; Matthias Vorgerd; Jan Gummert; Hendrik Milting

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease, frequently accompanied by sudden cardiac death and terminal heart failure. Genotyping of ARVC patients might be used for palliative treatment of the affected family. We genotyped a cohort of 22 ARVC patients referred to molecular genetic screening in our heart center for mutations in the desmosomal candidate genes JUP, DSG2, DSC2, DSP and PKP2 known to be associated with ARVC. In 43% of the cohort, we found disease-associated sequence variants. In addition, we screened for desmin mutations and found a novel desmin-mutation p.N116S in a patient with ARVC and terminal heart failure, which is located in segment 1A of the desmin rod domain. The mutation leads to the aggresome formation in cardiac and skeletal muscle without signs of an overt clinical myopathy. Cardiac aggresomes appear to be prominent, especially in the right ventricle of the heart. Viscosimetry and atomic force microscopy of the desmin wild-type and N116S mutant isolated from recombinant Escherichia coli revealed severe impairment of the filament formation, which was supported by transfections in SW13 cells. Thus, the gene coding for desmin appears to be a novel ARVC gene, which should be included in molecular genetic screening of ARVC patients.


Human Mutation | 2016

Mutations in FLNC are Associated with Familial Restrictive Cardiomyopathy.

Andreas Brodehl; Raechel A. Ferrier; Sara Jane Hamilton; Steven C. Greenway; Marie-Anne Brundler; Weiming Yu; William T. Gibson; Margaret L. McKinnon; Barbara McGillivray; Nanette Alvarez; Michael Giuffre; Jeremy Schwartzentruber; Brenda Gerull

Individuals affected by restrictive cardiomyopathy (RCM) often develop heart failure at young ages resulting in early heart transplantation. Familial forms are mainly caused by mutations in sarcomere proteins and demonstrate a common genetic etiology with other inherited cardiomyopathies. Using next‐generation sequencing, we identified two novel missense variants (p.S1624L; p.I2160F) in filamin‐C (FLNC), an actin‐cross‐linking protein mainly expressed in heart and skeletal muscle, segregating in two families with autosomal‐dominant RCM. Affected individuals presented with heart failure due to severe diastolic dysfunction requiring heart transplantation in some cases. Histopathology of heart tissue from patients of both families showed cytoplasmic inclusions suggesting protein aggregates, which were filamin‐C specific for the p.S1624L by immunohistochemistry. Cytoplasmic aggregates were also observed in transfected myoblast cell lines expressing this mutant filamin‐C indicating further evidence for its pathogenicity. Thus, FLNC is a disease gene for autosomal‐dominant RCM and broadens the phenotype spectrum of filaminopathies.


Journal of Biological Chemistry | 2012

Dual Color Photoactivation Localization Microscopy of Cardiomyopathy-associated Desmin Mutants

Andreas Brodehl; Per Niklas Hedde; Mareike Dieding; Azra Fatima; Volker Walhorn; Susan Gayda; Tomo Saric; Baerbel Klauke; Jan Gummert; Dario Anselmetti; Mike Heilemann; Gerd Ulrich Nienhaus; Hendrik Milting

Background: Heterozygous DES mutations affect filament formation leading to skeletal and cardiomyopathies. Results: Our results reveal different extent of filament formation defects by various desmin mutants under heterozygous conditions. Conclusion: Analysis of interaction and co-localization of mutant and wild-type desmin proves the co-existence of heterogeneous filaments in living cells. Significance: These results might be of relevance for the understanding of filament formation defects. Mutations in the DES gene coding for the intermediate filament protein desmin may cause skeletal and cardiac myopathies, which are frequently characterized by cytoplasmic aggregates of desmin and associated proteins at the cellular level. By atomic force microscopy, we demonstrated filament formation defects of desmin mutants, associated with arrhythmogenic right ventricular cardiomyopathy. To understand the pathogenesis of this disease, it is essential to analyze desmin filament structures under conditions in which both healthy and mutant desmin are expressed at equimolar levels mimicking an in vivo situation. Here, we applied dual color photoactivation localization microscopy using photoactivatable fluorescent proteins genetically fused to desmin and characterized the heterozygous status in living cells lacking endogenous desmin. In addition, we applied fluorescence resonance energy transfer to unravel short distance structural patterns of desmin mutants in filaments. For the first time, we present consistent high resolution data on the structural effects of five heterozygous desmin mutations on filament formation in vitro and in living cells. Our results may contribute to the molecular understanding of the pathological filament formation defects of heterozygous DES mutations in cardiomyopathies.


Journal of Molecular and Cellular Cardiology | 2016

Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect.

Andreas Brodehl; Mareike Dieding; Niklas Biere; Andreas Unger; Baerbel Klauke; Volker Walhorn; Jan Gummert; Uwe Schulz; Wolfgang A. Linke; Brenda Gerull; Matthias Vorgert; Dario Anselmetti; Hendrik Milting

BACKGROUND Dilated cardiomyopathy (DCM) could be caused by mutations in more than 40 different genes. However, the pathogenic impact of specific mutations is in most cases unknown complicating the genetic counseling of affected families. Therefore, functional studies could contribute to distinguish pathogenic mutations and benign variants. Here, we present a novel heterozygous DES missense variant (c.407C>T; p.L136P) identified by next generation sequencing in a DCM patient. DES encodes the cardiac intermediate filament protein desmin, which has important functions in mechanical stabilization and linkage of the cell structures in cardiomyocytes. METHODS AND RESULTS Cell transfection experiments and assembly assays of recombinant desmin in combination with atomic force microscopy were used to investigate the impact of this novel DES variant on filament formation. Desmin-p.L136P forms cytoplasmic aggregates indicating a severe intrinsic filament assembly defect of this mutant. Co-transfection experiments of wild-type and mutant desmin conjugated to different fluorescence proteins revealed a dominant affect of this mutant on filament assembly. These experiments were complemented by apertureless scanning near-field optical microscopy. CONCLUSION In vitro analysis demonstrated that desmin-p.L136P is unable to form regular filaments and accumulate instead within the cytoplasm. Therefore, we classified DES-p.L136P as a likely pathogenic mutation. In conclusion, the functional characterization of DES-p.L136P might have relevance for the genetic counseling of affected families with similar DES mutations and could contribute to distinguish pathogenic mutations from benign rare variants.


Circulation-cardiovascular Genetics | 2013

The novel desmin mutant p.A120D impairs filament formation, prevents intercalated disk localization, and causes sudden cardiac death.

Andreas Brodehl; Mareike Dieding; Baerbel Klauke; Eric Dec; Shrestha Madaan; Taosheng Huang; John Jay Gargus; Azra Fatima; Tomo Saric; Hamdin Cakar; Volker Walhorn; Katja Tönsing; Tim Skrzipczyk; Ramona Cebulla; Désirée Gerdes; Uwe Schulz; Jan Gummert; Jesper Hastrup Svendsen; M.S. Olesen; Dario Anselmetti; Alex Horby Christensen; Virginia E. Kimonis; Hendrik Milting

Background—The intermediate filament protein desmin is encoded by the gene DES and contributes to the mechanical stabilization of the striated muscle sarcomere and cell contacts within the cardiac intercalated disk. DES mutations cause severe skeletal and cardiac muscle diseases with heterogeneous phenotypes. Recently, DES mutations were also found in patients with arrhythmogenic right ventricular cardiomyopathy. Currently, the cellular and molecular pathomechanisms of the DES mutations leading to this disease are not exactly known. Methods and Results—We identified the 2 novel variants DES-p.A120D (c.359C>A) and DES-p.H326R (c.977A>G), which were characterized by cell culture experiments and atomic force microscopy. Family analysis indicated a broad spectrum of cardiomyopathies with a striking frequency of arrhythmias and sudden cardiac deaths. The in vitro experiments of desmin-p.A120D reveal a severe intrinsic filament formation defect causing cytoplasmic aggregates in cell lines and of the isolated recombinant protein. Model variants of codon 120 indicated that ionic interactions contribute to this filament formation defect. Ex vivo analysis of ventricular tissue slices revealed a loss of desmin staining within the intercalated disk and severe cytoplasmic aggregate formation, whereas z-band localization was not affected. The functional experiments of desmin-p.H326R did not demonstrate any differences from wild type. Conclusions—Because of the functional in vivo and in vitro characterization, DES-p.A120D has to be regarded as a pathogenic mutation and DES-p.H326R as a rare variant with unknown significance. Presumably, the loss of the desmin-p. A120D filament localization at the intercalated disk explains its clinical arrhythmogenic potential.


Beilstein Journal of Nanotechnology | 2013

Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

Alexander Harder; Mareike Dieding; Volker Walhorn; Sven Degenhard; Andreas Brodehl; Christina Wege; Hendrik Milting; Dario Anselmetti

Summary Both fluorescence imaging and atomic force microscopy (AFM) are highly versatile and extensively used in applications ranging from nanotechnology to life sciences. In fluorescence microscopy luminescent dyes serve as position markers. Moreover, they can be used as active reporters of their local vicinity. The dipolar coupling of the tip with the incident light and the fluorophore give rise to a local field and fluorescence enhancement. AFM topographic imaging allows for resolutions down to the atomic scale. It can be operated in vacuum, under ambient conditions and in liquids. This makes it ideal for the investigation of a wide range of different samples. Furthermore an illuminated AFM cantilever tip apex exposes strongly confined non-propagating electromagnetic fields that can serve as a coupling agent for single dye molecules. Thus, combining both techniques by means of apertureless scanning near-field optical microscopy (aSNOM) enables concurrent high resolution topography and fluorescence imaging. Commonly, among the various (apertureless) SNOM approaches metallic or metallized probes are used. Here, we report on our custom-built aSNOM setup, which uses commercially available monolithic silicon AFM cantilevers. The field enhancement confined to the tip apex facilitates an optical resolution down to 20 nm. Furthermore, the use of standard mass-produced AFM cantilevers spares elaborate probe production or modification processes. We investigated tobacco mosaic viruses and the intermediate filament protein desmin. Both are mixed complexes of building blocks, which are fluorescently labeled to a low degree. The simultaneous recording of topography and fluorescence data allows for the exact localization of distinct building blocks within the superordinate structures.


Human Mutation | 2017

The novel αB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy

Andreas Brodehl; Anna Gaertner-Rommel; Bärbel Klauke; Simon Andre Grewe; Ilona Schirmer; Andreas Peterschröder; Lothar Faber; Matthias Vorgerd; Jan Gummert; Dario Anselmetti; Uwe Schulz; Lech Paluszkiewicz; Hendrik Milting

Restrictive cardiomyopathy (RCM) is a rare heart disease characterized by diastolic dysfunction and atrial enlargement. The genetic etiology of RCM is not completely known. We identified by a next‐generation sequencing panel the novel CRYAB missense mutation c.326A>G, p.D109G in a small family with RCM in combination with skeletal myopathy with an early onset of the disease. CRYAB encodes αB‐crystallin, a member of the small heat shock protein family, which is highly expressed in cardiac and skeletal muscle. In addition to in silico prediction analysis, our structural analysis of explanted myocardial tissue of a mutation carrier as well as in vitro cell transfection experiments revealed abnormal protein aggregation of mutant αB‐crystallin and desmin, supporting the deleterious effect of this novel mutation. In conclusion, CRYAB appears to be a novel RCM gene, which might have relevance for the molecular diagnosis and the genetic counseling of further affected families in the future.


PLOS ONE | 2017

Transgenic mice overexpressing desmocollin-2 (DSC2) develop cardiomyopathy associated with myocardial inflammation and fibrotic remodeling

Andreas Brodehl; Darrell D. Belke; Lauren Garnett; Kristina Martens; Nelly Abdelfatah; M. P. Rodriguez; Catherine Diao; Yong-Xiang Chen; Paul M. K. Gordon; Anders Nygren; Brenda Gerull

Background Arrhythmogenic cardiomyopathy is an inherited heart muscle disorder leading to ventricular arrhythmias and heart failure, mainly as a result of mutations in cardiac desmosomal genes. Desmosomes are cell-cell junctions mediating adhesion of cardiomyocytes; however, the molecular and cellular mechanisms underlying the disease remain widely unknown. Desmocollin-2 is a desmosomal cadherin serving as an anchor molecule required to reconstitute homeostatic intercellular adhesion with desmoglein-2. Cardiac specific lack of desmoglein-2 leads to severe cardiomyopathy, whereas overexpression does not. In contrast, the corresponding data for desmocollin-2 are incomplete, in particular from the view of protein overexpression. Therefore, we developed a mouse model overexpressing desmocollin-2 to determine its potential contribution to cardiomyopathy and intercellular adhesion pathology. Methods and results We generated transgenic mice overexpressing DSC2 in cardiac myocytes. Transgenic mice developed a severe cardiac dysfunction over 5 to 13 weeks as indicated by 2D-echocardiography measurements. Corresponding histology and immunohistochemistry demonstrated fibrosis, necrosis and calcification which were mainly localized in patches near the epi- and endocardium of both ventricles. Expressions of endogenous desmosomal proteins were markedly reduced in fibrotic areas but appear to be unchanged in non-fibrotic areas. Furthermore, gene expression data indicate an early up-regulation of inflammatory and fibrotic remodeling pathways between 2 to 3.5 weeks of age. Conclusion Cardiac specific overexpression of desmocollin-2 induces necrosis, acute inflammation and patchy cardiac fibrotic remodeling leading to fulminant biventricular cardiomyopathy.


Circulation | 2017

Novel Desmin Mutation p.Glu401Asp Impairs Filament Formation, Disrupts Cell Membrane Integrity, and Causes Severe Arrhythmogenic Left Ventricular Cardiomyopathy/Dysplasia

Francisco José Bermúdez-Jiménez; Víctor Carriel; Andreas Brodehl; Miguel Alaminos; Antonio Campos; Ilona Schirmer; Hendrik Milting; Beatriz Álvarez Abril; Miguel Álvarez; Silvia López-Fernández; Diego García-Giustiniani; Lorenzo Monserrat; Luis Tercedor; Juan Jiménez-Jáimez

Background: Desmin (DES) mutations cause severe skeletal and cardiac muscle disease with heterogeneous phenotypes. Recently, DES mutations were described in patients with inherited arrhythmogenic right ventricular cardiomyopathy/dysplasia, although their cellular and molecular pathomechanisms are not precisely known. Our aim is to describe clinically and functionally the novel DES-p.Glu401Asp mutation as a cause of inherited left ventricular arrhythmogenic cardiomyopathy/dysplasia. Methods: We identified the novel DES mutation p.Glu401Asp in a large Spanish family with inherited left ventricular arrhythmogenic cardiomyopathy/dysplasia and a high incidence of adverse cardiac events. A full clinical evaluation was performed on all mutation carriers and noncarriers to establish clinical and genetic cosegregation. In addition, desmin, and intercalar disc–related proteins expression were histologically analyzed in explanted cardiac tissue affected by the DES mutation. Furthermore, mesenchymal stem cells were isolated and cultured from 2 family members with the DES mutation (1 with mild and 1 with severe symptomatology) and a member without the mutation (control) and differentiated ex vivo to cardiomyocytes. Then, important genes related to cardiac differentiation and function were analyzed by real-time quantitative polymerase chain reaction. Finally, the p.Glu401Asp mutated DES gene was transfected into cell lines and analyzed by confocal microscopy. Results: Of the 66 family members screened for the DES-p.Glu401Asp mutation, 23 of them were positive, 6 were obligate carriers, and 2 were likely carriers. One hundred percent of genotype-positive patients presented data consistent with inherited arrhythmogenic cardiomyopathy/dysplasia phenotype with variable disease severity expression, high-incidence of sudden cardiac death, and absence of skeletal myopathy or conduction system disorders. Immunohistochemistry was compatible with inherited arrhythmogenic cardiomyopathy/dysplasia, and the functional study showed an abnormal growth pattern and cellular adhesion, reduced desmin RNA expression, and some other membrane proteins, as well, and desmin aggregates in transfected cells expressing the mutant desmin. Conclusions: The DES-p.Glu401Asp mutation causes predominant inherited left ventricular arrhythmogenic cardiomyopathy/dysplasia with a high incidence of adverse clinical events in the absence of skeletal myopathy or conduction system disorders. The pathogenic mechanism probably corresponds to an alteration in desmin dimer and oligomer assembly and its connection with membrane proteins within the intercalated disc.


European Journal of Human Genetics | 2013

Functional characterization of desmin mutant p.P419S

Andreas Brodehl; Mareike Dieding; Hamdin Cakar; Bärbel Klauke; Volker Walhorn; Jan Gummert; Dario Anselmetti; Hendrik Milting

Recently, Hedberg et al1 identified a DES mutation (p.P419S) in a Swedish family, suffering from myofibrillar myopathy (MFM) in combination with arrhythmogenic right ventricular cardiomyopathy (ARVC), by next-generation sequencing. Originally, a linkage analysis indicated that the genetic defect is located on chromosome 10q22.3 in this family.2 The analysis of muscle biopsies of affected patients demonstrated an aggregation of desmin and further proteins.

Collaboration


Dive into the Andreas Brodehl's collaboration.

Top Co-Authors

Avatar

Hendrik Milting

Heart and Diabetes Center North Rhine-Westphalia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Gummert

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Schulz

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge