Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hendrik Milting is active.

Publication


Featured researches published by Hendrik Milting.


Circulation | 2005

Increased Cardiac Expression of Tissue Inhibitor of Metalloproteinase-1 and Tissue Inhibitor of Metalloproteinase-2 Is Related to Cardiac Fibrosis and Dysfunction in the Chronic Pressure-Overloaded Human Heart

Stephane Heymans; Blanche Schroen; Pieter Vermeersch; Hendrik Milting; Fangye Gao; Astrid Kassner; Hilde Gillijns; Paul Herijgers; Willem Flameng; Peter Carmeliet; Frans Van de Werf; Yigal M. Pinto; Stefan Janssens

Background—Alterations in the balance of matrix metalloproteinases (MMPs) and their specific tissue inhibitors (TIMPs) are involved in left ventricular (LV) remodeling. Whether their expression is related to interstitial fibrosis or LV dysfunction in patients with chronic pressure overload–induced LV hypertrophy, however, is unknown. Methods and Results—Therefore, cardiac biopsies were taken in 36 patients with isolated aortic stenosis (AS) and in 29 control patients without LV hypertrophy. Microarray analysis revealed significantly increased mRNA expression of collagen types I, III, and IV and transcripts involved in collagen synthesis, including procollagen endopeptidase and lysine and proline hydroxylases, in AS compared with control patients. Collagen deposition was greater in AS than in control patients and was most pronounced in AS patients with severe diastolic dysfunction. Cardiac mRNA expression of TIMP-1 and TIMP-2 was significantly increased in AS compared with control patients (mRNA transcript levels normalized to GAPDH: TIMP-1, 0.67±0.1 in AS versus 0.37±0.08 in control patients; TIMP-2, 9.5±2.6 in AS versus 1.6±0.4 in control patients; P<0.05 for both) but did not differ significantly for MMP-1, -2, or -9. Cardiac TIMP-1 and -2 transcripts were significantly related to the degree of interstitial fibrosis and proportional to diastolic dysfunction in AS patients. Conclusions—Cardiac expression of TIMP-1 and TIMP-2 is significantly increased in chronic pressure-overloaded human hearts compared with controls and is related to the degree of interstitial fibrosis.


Circulation | 2012

Ventricular Assist Device Implantation Corrects Myocardial Lipotoxicity, Reverses Insulin Resistance, and Normalizes Cardiac Metabolism in Patients With Advanced Heart Failure

Aalap Chokshi; Konstantinos Drosatos; Faisal H. Cheema; Ruiping Ji; Tuba Khawaja; Shuiqing Yu; Tomoko S. Kato; Raffay Khan; Hiroo Takayama; Ralph Knöll; Hendrik Milting; Christine Chung; Ulrich P. Jorde; Yoshifumi Naka; Donna Mancini; Ira J. Goldberg; P. Christian Schulze

Background— Heart failure is associated with impaired myocardial metabolism with a shift from fatty acids to glucose use for ATP generation. We hypothesized that cardiac accumulation of toxic lipid intermediates inhibits insulin signaling in advanced heart failure and that mechanical unloading of the failing myocardium corrects impaired cardiac metabolism. Methods and Results— We analyzed the myocardium and serum of 61 patients with heart failure (body mass index, 26.5±5.1 kg/m2; age, 51±12 years) obtained during left ventricular assist device implantation and at explantation (mean duration, 185±156 days) and from 9 control subjects. Systemic insulin resistance in heart failure was accompanied by decreased myocardial triglyceride and overall fatty acid content but increased toxic lipid intermediates, diacylglycerol, and ceramide. Increased membrane localization of protein kinase C isoforms, inhibitors of insulin signaling, and decreased activity of insulin signaling molecules Akt and Foxo were detectable in heart failure compared with control subjects. Left ventricular assist device implantation improved whole-body insulin resistance (homeostatic model of analysis–insulin resistance, 4.5±0.6–3.2±0.5; P<0.05) and decreased myocardial levels of diacylglycerol and ceramide, whereas triglyceride and fatty acid content remained unchanged. Improved activation of the insulin/phosphatidylinositol-3 kinase/Akt signaling cascade after left ventricular assist device implantation was confirmed by increased phosphorylation of Akt and Foxo, which was accompanied by decreased membrane localization of protein kinase C isoforms after left ventricular assist device implantation. Conclusions— Mechanical unloading after left ventricular assist device implantation corrects systemic and local metabolic derangements in advanced heart failure, leading to reduced myocardial levels of toxic lipid intermediates and improved cardiac insulin signaling.


Cellular Physiology and Biochemistry | 2011

In vitro Modeling of Ryanodine Receptor 2 Dysfunction Using Human Induced Pluripotent Stem Cells

Azra Fatima; Guoxing Xu; Kaifeng Shao; Symeon Papadopoulos; Martin Lehmann; Juan Jose Arnaiz-Cot; Angelo O. Rosa; Filomain Nguemo; Matthias Matzkies; Sven Dittmann; Susannah L. Stone; Matthias Linke; Ulrich Zechner; Vera Beyer; Hans Christian Hennies; Stephan Rosenkranz; Baerbel Klauke; Abdul Shokor Parwani; Wilhelm Haverkamp; Gabriele Pfitzer; Martin Farr; Lars Cleemann; Martin Morad; Hendrik Milting; Juergen Hescheler; Tomo Saric

Background/Aims: Induced pluripotent stem (iPS) cells generated from accessible adult cells of patients with genetic diseases open unprecedented opportunities for exploring the pathophysiology of human diseases in vitro. Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited cardiac disorder that is caused by mutations in the cardiac ryanodine receptor type 2 gene (RYR2) and is characterized by stress-induced ventricular arrhythmia that can lead to sudden cardiac death in young individuals. The aim of this study was to generate iPS cells from a patient with CPVT1 and determine whether iPS cell-derived cardiomyocytes carrying patient specific RYR2 mutation recapitulate the disease phenotype in vitro. Methods: iPS cells were derived from dermal fibroblasts of healthy donors and a patient with CPVT1 carrying the novel heterozygous autosomal dominant mutation p.F2483I in the RYR2. Functional properties of iPS cell derived-cardiomyocytes were analyzed by using whole-cell current and voltage clamp and calcium imaging techniques. Results: Patch-clamp recordings revealed arrhythmias and delayed afterdepolarizations (DADs) after catecholaminergic stimulation of CPVT1-iPS cell-derived cardiomyocytes. Calcium imaging studies showed that, compared to healthy cardiomyocytes, CPVT1-cardiomyocytes exhibit higher amplitudes and longer durations of spontaneous Ca2+ release events at basal state. In addition, in CPVT1-cardiomyocytes the Ca2+-induced Ca2+-release events continued after repolarization and were abolished by increasing the cytosolic cAMP levels with forskolin. Conclusion: This study demonstrates the suitability of iPS cells in modeling RYR2-related cardiac disorders in vitro and opens new opportunities for investigating the disease mechanism in vitro, developing new drugs, predicting their toxicity, and optimizing current treatment strategies.


Circulation | 2008

Combined Tyrosine and Serine/Threonine Kinase Inhibition by Sorafenib Prevents Progression of Experimental Pulmonary Hypertension and Myocardial Remodeling

Martina Klein; Ralph T. Schermuly; Peter Ellinghaus; Hendrik Milting; Bernd Riedl; Sevdalina Nikolova; Soni Savai Pullamsetti; Norbert Weissmann; Eva Dony; Rajkumar Savai; Hossein Ardeschir Ghofrani; Friedrich Grimminger; Andreas Busch; Stefan Schäfer

Background— Inhibition of tyrosine kinases, including platelet-derived growth factor receptor, can reduce pulmonary arterial pressure in experimental and clinical pulmonary hypertension. We hypothesized that inhibition of the serine/threonine kinases Raf-1 (also termed c-Raf) and b-Raf in addition to inhibition of tyrosine kinases effectively controls pulmonary vascular and right heart remodeling in pulmonary hypertension. Methods and Results— We investigated the effects of the novel multikinase inhibitor sorafenib, which inhibits tyrosine kinases as well as serine/threonine kinases, in comparison to imatinib, a tyrosine kinase inhibitor, on hemodynamics, pulmonary and right ventricular (RV) remodeling, and downstream signaling in experimental pulmonary hypertension. Fourteen days after monocrotaline injection, male rats were treated orally for another 14 days with sorafenib (10 mg/kg per day), imatinib (50 mg/kg per day), or vehicle (n=12 to 16 per group). RV systolic pressure was decreased to 35.0±1.5 mm Hg by sorafenib and to 54.0±4.4 mm Hg by imatinib compared with placebo (82.9±6.0 mm Hg). In parallel, both sorafenib and imatinib reduced RV hypertrophy and pulmonary arterial muscularization. The effects of sorafenib on RV systolic pressure and RV mass were significantly greater than those of imatinib. Sorafenib prevented phosphorylation of Raf-1 and suppressed activation of the downstream ERK1/2 signaling pathway in RV myocardium and the lungs. In addition, sorafenib but not imatinib antagonized vasopressin-induced hypertrophy of the cardiomyoblast cell line H9c2. Conclusions— The multikinase inhibitor sorafenib prevents pulmonary remodeling and improves cardiac and pulmonary function in experimental pulmonary hypertension. Sorafenib exerts direct myocardial antihypertrophic effects, which appear to be mediated via inhibition of the Raf kinase pathway. The combined inhibition of tyrosine and serine/threonine kinases may provide an option to treat pulmonary arterial hypertension and associated right heart remodeling.


Journal of Heart and Lung Transplantation | 2008

Plasma biomarkers of myocardial fibrosis and remodeling in terminal heart failure patients supported by mechanical circulatory support devices.

Hendrik Milting; Peter Ellinghaus; Michael Seewald; Hamdin Cakar; B. Bohms; Astrid Kassner; Reiner Körfer; Martina Klein; Thomas Krahn; Lothar Kruska; Aly El Banayosy; Frank Kramer

BACKGROUND In this study we analyzed putative biomarkers for myocardial remodeling in plasma from 55 endstage heart failure patients with the need for mechanical circulatory support (MCS). We compared our data to 40 healthy controls and examined if MCS by either ventricular assist devices or total artificial hearts has an impact on plasma concentrations of remodeling biomarkers. METHODS & RESULTS Plasma biomarkers were analysed pre and 30 days post implantation of a MCS device using commercially available enzyme linked immunosorbent assays (ELISA). We observed that the plasma concentrations of remodeling biomarkers: tissue inhibitor of metalloproteinase 1 (TIMP1), tenascin C (TNC), galectin 3 (LGALS3), osteopontin (OPN) and of neurohumoral biomarker brain natriuretic peptide (BNP), are significantly elevated in patients with terminal heart failure compared to healthy controls. We did not find elevated plasma concentrations for matrix metalloproteinase 2 (MMP2) and procollagen I C-terminal peptide (PCIP). However, only BNP plasma levels were reduced by MCS, whereas the concentrations of remodeling biomarkers remained elevated or even increased further 30 days after MCS. LGALS3 plasma concentrations at device implantation were significantly higher in patients who did not survive MCS due to multi organ failure (MOF). CONCLUSIONS Our findings indicate that mechanical unloading in endstage heart failure is not reflected by a rapid reduction of remodeling plasma biomarkers.


Human Molecular Genetics | 2010

De novo desmin mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy

Baerbel Klauke; Sabine Kossmann; Anna Gaertner; Kristina Brand; Ines Stork; Andreas Brodehl; Mareike Dieding; Volker Walhorn; Dario Anselmetti; Désirée Gerdes; B. Bohms; Uwe Schulz; Edzard zu Knyphausen; Matthias Vorgerd; Jan Gummert; Hendrik Milting

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease, frequently accompanied by sudden cardiac death and terminal heart failure. Genotyping of ARVC patients might be used for palliative treatment of the affected family. We genotyped a cohort of 22 ARVC patients referred to molecular genetic screening in our heart center for mutations in the desmosomal candidate genes JUP, DSG2, DSC2, DSP and PKP2 known to be associated with ARVC. In 43% of the cohort, we found disease-associated sequence variants. In addition, we screened for desmin mutations and found a novel desmin-mutation p.N116S in a patient with ARVC and terminal heart failure, which is located in segment 1A of the desmin rod domain. The mutation leads to the aggresome formation in cardiac and skeletal muscle without signs of an overt clinical myopathy. Cardiac aggresomes appear to be prominent, especially in the right ventricle of the heart. Viscosimetry and atomic force microscopy of the desmin wild-type and N116S mutant isolated from recombinant Escherichia coli revealed severe impairment of the filament formation, which was supported by transfections in SW13 cells. Thus, the gene coding for desmin appears to be a novel ARVC gene, which should be included in molecular genetic screening of ARVC patients.


Circulation-heart Failure | 2012

Adipose Tissue Inflammation and Adiponectin Resistance in Patients with Advanced Heart Failure: Correction after Ventricular Assist Device Implantation

Raffay Khan; Tomoko S. Kato; Aalap Chokshi; Michael Chew; Shuiqing Yu; Christina Wu; Parvati Singh; Faisal H. Cheema; Hiroo Takayama; Collette Harris; Gissette Reyes-Soffer; Ralph Knöll; Hendrik Milting; Yoshifumi Naka; Donna Mancini; P. Christian Schulze

Background— Heart failure (HF) is characterized by inflammation, insulin resistance, and progressive catabolism. We hypothesized that patients with advanced HF also develop adipose tissue inflammation associated with impaired adipokine signaling and that hemodynamic correction through implantation of ventricular assist devices (VADs) would reverse adipocyte activation and correct adipokine signaling in advanced HF. Methods and Results— Circulating insulin, adiponectin, leptin, and resistin levels were measured in 36 patients with advanced HF before and after VAD implantation and 10 healthy control subjects. Serum adiponectin was higher in HF patients before VAD implantation compared with control subjects (13.3±4.9 versus 6.4±2.1 &mgr;g/mL, P=0.02). VAD implantation (mean, 129±99 days) reduced serum adiponectin (7.4±3.4 &mgr;g/mL, P<0.05) and improved insulin resistance (Homeostasis Assessment Model of insulin resistance: 6.3±5.8–3.6±2.9; P<0.05). Adiponectin expression in adipose tissue decreased after VAD implantation (−65%; P<0.03). Adiponectin receptor expression was suppressed in the failing myocardium compared with control subjects and increased after mechanical unloading. Histomorphometric analysis of adipose tissue specimens revealed reduced adipocyte size in patients with advanced HF compared with control subjects (1999±24 &mgr;m2 versus 5583±142 &mgr;m2 in control subjects; P<0.05), which increased after VAD placement. Of note, macrophage infiltration in adipose tissue was higher in advanced HF patients compared with control subjects (+25%; P<0.01), which normalized after VAD implantation. Conclusions— Adipose tissue inflammation and adiponectin resistance develop in advanced HF. Mechanical unloading of the failing myocardium reverses adipose tissue macrophage infiltration, inflammation, and adiponectin resistance in patients with advanced HF.


Cardiovascular Research | 2009

Chronic inhibition of phosphodiesterase 5 does not prevent pressure-overload-induced right-ventricular remodelling.

Stefan Schäfer; Peter Ellinghaus; Wiebke Janssen; Frank Kramer; Klemens Lustig; Hendrik Milting; Raimund Kast; Martina Klein

AIMS Inhibition of phosphodiesterase 5 (PDE5) decreases pulmonary pressure and improves symptoms in patients with pulmonary arterial hypertension. It is unclear however, whether inhibition of PDE5 can prevent myocardial remodelling during right-ventricular pressure overload. METHODS AND RESULTS Right-ventricular pressure overload was produced in male rats in a pulmonary hypertension model (monocrotaline 60 mg/kg s.c.) or by surgical pulmonary artery banding. PDE5 inhibition using oral sildenafil (50 mg/kg/day in drinking water) or placebo was initiated 14 days after monocrotaline treatment and continued for 14 days until final examination. In the pulmonary artery banding groups, rats were treated with sildenafil (50 mg/kg/day) or placebo for 21 days following surgical pulmonary artery banding. At the final experiments, right-ventricular haemodynamics were measured and remodelling was analysed using histological, biochemical, and gene expression markers. Both monocrotaline and pulmonary artery banding increased right-ventricular systolic pressure to approximately 80 mmHg. In parallel, both interventions induced markers of hypertrophy (upregulation of natriuretic peptides, increase in myocyte diameter) and fibrosis (upregulation of collagen types 1A2 and 3A1) as well as mRNA expression of the tissue inhibitor of matrix metalloproteases 1 and osteopontin in the right ventricle. In monocrotaline model, sildenafil decreased pulmonary pressure, reduced right-ventricular hypertrophy, and prevented fibrosis marker gene upregulation. After pulmonary artery banding, in contrast, sildenafil increased markers of myocardial remodelling and right-ventricular myocyte diameter. CONCLUSION Sildenafil prevents myocardial remodelling in pulmonary hypertension through an indirect action via right-ventricular unloading.


Journal of Heart and Lung Transplantation | 2001

The time course of natriuretic hormones as plasma markers of myocardial recovery in heart transplant candidates during ventricular assist device support reveals differences among device types.

Hendrik Milting; Aly El Banayosy; Astrid Kassner; Oliver Fey; Peter Sarnowski; Latif Arusoglu; Rolf Thieleczek; Thomas Brinkmann; Knut Kleesiek; Reiner Körfer

BACKGROUND The natriuretic hormones ANP and BNP are expressed differently in the myocardium. Both hormones have compensatory diuretic activity during heart failure. Mechanical stretch of the myocardial walls induces the expression of these hormones. In failing human myocardium, both ANP and BNP are transcribed in the ventricular myocardium in high amounts. We measured the plasma concentrations of ANP and BNP in patients supported by various ventricular assist devices (VADs) at various times. We analyzed the time courses of ANP and BNP to determine (1) the time scale of their down-regulation as a marker of putative myocardial recovery, (2) their steady-state levels under VAD support and (3) differences caused by various VAD devices. METHODS We analyzed ANP and BNP using commercially available radioimmune assays. We analyzed the time courses of patients supported by Thoratec (THO) LVAD (n = 8), TCI Heartmate (TCI) (n = 6), Novacor (NOV) (n = 7), and Lionheart (LIO) (n = 3). RESULTS Patients supported with NOV and some patients with TCI showed down-regulation of BNP to a steady-state level at 30 to 50 days, following a single exponential decay. In contrast, patients supported by THO or LIO did not reveal a determined time course of the natriuretic hormones. Only a few patients reached normal plasma values during VAD support. CONCLUSION The time courses of ANP and BNP differ among VAD types because of construction and/or driving mode, which might be important when considering patients for weaning from VAD without heart transplant.


Circulation | 2006

Relevance of brain natriuretic peptide in preload-dependent regulation of cardiac sarcoplasmic reticulum Ca2+ ATPase expression.

Harald Kögler; Peter Schott; Karl Toischer; Hendrik Milting; Phuc Nguyen Van; Michael Kohlhaas; Cornelia Grebe; Astrid Kassner; Erik Domeier; Nils Teucher; Tim Seidler; Ralph Knöll; Lars S. Maier; Aly El-Banayosy; Reiner Körfer; Gerd Hasenfuss

Background— In heart failure (HF), ventricular myocardium expresses brain natriuretic peptide (BNP). Despite the association of elevated serum levels with poor prognosis, BNP release is considered beneficial because of its antihypertrophic, vasodilating, and diuretic properties. However, there is evidence that BNP-mediated signaling may adversely influence cardiac remodeling, with further impairment of calcium homeostasis. Methods and Results— We studied the effects of BNP on preload-dependent myocardial sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) expression. In rabbit isolated muscle strips stretched to high preload and shortening isotonically over 6 hours, the SERCA/glyceraldehyde phosphate dehydrogenase mRNA ratio was enhanced by 168% (n=8) compared with unloaded preparations (n=8; P<0.001). Recombinant human BNP at a concentration typically found in end-stage HF patients (350 pg/mL) abolished SERCA upregulation by stretch (n=9; P<0.0001 versus BNP free). Inhibition of cyclic guanosine 3′,5′ monophosphate (cGMP)–phosphodiesterase-5 mimicked this effect, whereas inhibition of cGMP-dependent protein kinase restored preload-dependent SERCA upregulation in the presence of recombinant human BNP. Furthermore, in myocardium from human end-stage HF patients undergoing cardiac transplantation (n=15), BNP expression was inversely correlated with SERCA levels. Moreover, among 23 patients treated with left ventricular assist devices, significant SERCA2a recovery occurred in those downregulating BNP. Conclusions— Our data indicate that preload stimulates SERCA expression. BNP antagonizes this mechanism via guanylyl cyclase-A, cGMP, and cGMP-dependent protein kinase. This novel action of BNP to uncouple preload-dependent SERCA expression may adversely affect contractility in patients with HF.

Collaboration


Dive into the Hendrik Milting's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Gummert

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aly El-Banayosy

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge