Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Burkhalter is active.

Publication


Featured researches published by Andreas Burkhalter.


Nature Reviews Neuroscience | 2008

Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex.

Giorgio A. Ascoli; Lidia Alonso-Nanclares; Stewart A. Anderson; German Barrionuevo; Ruth Benavides-Piccione; Andreas Burkhalter; György Buzsáki; Bruno Cauli; Javier DeFelipe; Alfonso Fairén; Dirk Feldmeyer; Gord Fishell; Yves Frégnac; Tamás F. Freund; Daniel Gardner; Esther P. Gardner; Jesse H. Goldberg; Moritz Helmstaedter; Shaul Hestrin; Fuyuki Karube; Zoltán F. Kisvárday; Bertrand Lambolez; David A. Lewis; Oscar Marín; Henry Markram; Alberto Muñoz; Adam M. Packer; Carl C. H. Petersen; Kathleen S. Rockland; Jean Rossier

Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.


The Journal of Comparative Neurology | 2007

Area map of mouse visual cortex.

Quanxin Wang; Andreas Burkhalter

It is controversial whether mouse extrastriate cortex has a “simple” organization in which lateral primary visual cortex (V1) is adjoined by a single area V2 or has a “complex” organization, in which lateral V1 is adjoined by multiple distinct areas, all of which share the vertical meridian with V1. Resolving this issue is important for understanding the evolution and development of cortical arealization. We have used triple pathway tracing combined with receptive field recordings to map azimuth and elevation in the same brain and have referenced these maps against callosal landmarks. We found that V1 projects to 15 cortical fields. At least nine of these contain maps with complete and orderly representations of the entire visual hemifield and therefore represent distinct areas. One of these, PM, adjoins V1 at the medial border. Five areas, P, LM, AL, RL, and A, adjoin V1 on the lateral border, but only LM shares the vertical meridian representation with V1. This suggests that LM is homologous to V2 and that the lateral extrastriate areas do not represent modules within a single area V2. Thus, mouse visual cortex is “simple” in the sense that lateral V1 is adjoined by a single V2‐like area, LM, and “complex” in having a string of areas in lateral extrastriate cortex, which receive direct V1 input. The results suggest that large numbers of areas with topologically equivalent maps of the visual field emerge early in evolution and that homologous areas are inherited in different mammalian lineages. J. Comp. Neurol. 502:339–357, 2007.


Frontiers in Neuroanatomy | 2008

Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining

Yuri Gonchar; Quanxin Wang; Andreas Burkhalter

The majority of cortical interneurons use GABA (gamma amino butyric acid) as inhibitory neurotransmitter. GABAergic neurons are morphologically, connectionally, electrically and chemically heterogeneous. In rat cerebral cortex three distinct groups of GABAergic interneurons have been identified by the expression of parvalbumin (PV), calretinin (CR) and somatostatin (SOM). Recent studies in mouse cerebral cortex have revealed a different organization in which the CR and SOM populations are partially overlapping. Because CR and SOM neurons derive from different progenitors located in different embryonic structures, the coexpression of CR + SOM suggests that the chemical differentiation of interneurons is regulated postmitotically. Here, we have taken an important first step towards understanding this process by triple immunostaining mouse visual cortex with a panel of antibodies, which has been used extensively for classifying developing interneurons. We have found at least 13 distinct groups of GABAergic neurons which include PV, CR, SOM, CCK (cholecystokinin), CR + SOM, CR + NPY (neuropeptide Y), CR + VIP (vasointestinal polypeptide), SOM + NPY, SOM + VIP, VIP + ChAT (choline acetyltransferase), CCK + NPY, CR + SOM + NPY and CR + SOM + VIP expressing cells. Triple immunostaining with PV, CR and SOM antibodies during postnatal development further showed that PV is never colocalized with CR and SOM. Importantly, expression of SOM and CR + SOM developed after the percentage of CR cells that do not express SOM has reached the mature level, suggesting that the chemical differentiation of SOM and CR + SOM neurons is a postnatal event, which may be controlled by transcriptional regulation.


The Journal of Neuroscience | 2012

Network Analysis of Corticocortical Connections Reveals Ventral and Dorsal Processing Streams in Mouse Visual Cortex

Quanxin Wang; Olaf Sporns; Andreas Burkhalter

Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that shown previously in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e., connectivity profile) that was well fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor, and limbic cortices, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortices. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species.


The Journal of Comparative Neurology | 1996

Microcircuitry of forward and feedback connections within rat visual cortex.

Randall R. Johnson; Andreas Burkhalter

Visual cortex in mammals is composed of many distinct areas that are linked by reciprocal connections to form a multilevel hierarchy. Ascending information is sent via forward connections from lower to higher areas and is thought to contribute to the emergence of increasingly complex receptive field properties at higher levels. Descending signals are transmitted via feedback connections from higher to lower areas and are believed to provide information about the context in which a stimulus appears, to contribute to modulation of visual responses by attention, and to play a role in memory processes.


The Journal of Neuroscience | 2011

Gateways of Ventral and Dorsal Streams in Mouse Visual Cortex

Quanxin Wang; Enquan Gao; Andreas Burkhalter

It is widely held that the spatial processing functions underlying rodent navigation are similar to those encoding human episodic memory (Doeller et al., 2010). Spatial and nonspatial information are provided by all senses including vision. It has been suggested that visual inputs are fed to the navigational network in cortex and hippocampus through dorsal and ventral intracortical streams (Whitlock et al., 2008), but this has not been shown directly in rodents. We have used cytoarchitectonic and chemoarchitectonic markers, topographic mapping of receptive fields, and pathway tracing to determine in mouse visual cortex whether the lateromedial field (LM) and the anterolateral field (AL), which are the principal targets of primary visual cortex (V1) (Wang and Burkhalter, 2007) specialized for processing nonspatial and spatial visual information (Gao et al., 2006), are distinct areas with diverse connections. We have found that the LM/AL border coincides with a change in type 2 muscarinic acetylcholine receptor expression in layer 4 and with the representation of the lower visual field periphery. Our quantitative analyses also show that LM strongly projects to temporal cortex as well as the lateral entorhinal cortex, which has weak spatial selectivity (Hargreaves et al., 2005). In contrast, AL has stronger connections with posterior parietal cortex, motor cortex, and the spatially selective medial entorhinal cortex (Haftig et al., 2005). These results support the notion that LM and AL are architecturally, topographically, and connectionally distinct areas of extrastriate visual cortex and that they are gateways for ventral and dorsal streams.


The Journal of Neuroscience | 1997

A Polysynaptic Feedback Circuit in Rat Visual Cortex

Randall R. Johnson; Andreas Burkhalter

Feedback connections from extrastriate cortex to primary visual cortex (V1) in the primate may provide “top-down” information that plays a role in visual attention and object recognition. Our work in a rodent model of corticocortical circuitry demonstrates that feedback pathways synapse preferentially with pyramidal cells in V1 (Johnson and Burkhalter, 1996) and favor excitation over inhibition in cortical microcircuits (Shao and Burkhalter, 1996). To investigate the polysynaptic circuits activated by feedback inputs, we studied chains of neurons postsynaptic to feedback connections using a combination of axonal tract tracing and anterograde degeneration. This approach enabled independent labeling of local collaterals of forward-projecting neurons in V1 and feedback connections from extrastriate lateromedial (LM) visual area to V1. Postsynaptic targets were identified in the electron microscope after retrograde transport of biotinylated dextran amine (BDA) to identify dendrites of forward-projecting neurons (i.e., from V1 to LM) and postembedding immunogold labeling to identify GABAergic interneurons. The results show that feedback connections provide strong monosynaptic input to forward-projecting neurons in V1. These neurons in turn make local connections that preferentially form synapses with other pyramidal cells (∼97%), many of which were identified as forward-projecting neurons. This indicates that feedback pathways provide input directly to neurons which make the reciprocal forward connection, and that feedback-recipient forward-projecting neurons are strongly interconnected. The function of these excitatory networks within V1 may be to amplify feedback activity and provide a circuit for modulation of striate cortical activity by top-down influences.


The Journal of Comparative Neurology | 1997

Nasotemporal asymmetries in V1: Ocular dominance columns of infant, adult, and strabismic macaque monkeys

Lawrence Tychsen; Andreas Burkhalter

To quantify asymmetries of input from the two eyes into each cerebral hemisphere, we measured ocular dominance column (ODC) widths and areas in the striate visual cortex (area V1) of macaque monkeys. Ocular dominance stripes in layer 4C were labeled by using transneuronal transport of intraocularly injected wheat germ agglutinin‐horseradish peroxidase (WGA‐HRP) or cytochrome oxidase (CO) histochemistry, after deafferentation of one eye or even by leaving afferent input intact.


Frontiers in Neuroscience | 2008

Many specialists for suppressing cortical excitation

Andreas Burkhalter

Cortical computations are critically dependent on GABA-releasing neurons for dynamically balancing excitation with inhibition that is proportional to the overall level of activity. Although it is widely accepted that there are multiple types of interneurons, defining their identities based on qualitative descriptions of morphological, molecular and physiological features has failed to produce a universally accepted ‘parts list’, which is needed to understand the roles that interneurons play in cortical processing. A list of features has been published by the Petilla Interneurons Nomenclature Group, which represents an important step toward an unbiased classification of interneurons. To this end some essential features have recently been studied quantitatively and their association was examined using multidimensional cluster analyses. These studies revealed at least 3 distinct electrophysiological, 6 morphological and 15 molecular phenotypes. This is a conservative estimate of the number of interneuron types, which almost certainly will be revised as more quantitative studies will be performed and similarities will be defined objectively. It is clear that interneurons are organized with physiological attributes representing the most general, molecular characteristics the most detailed and morphological features occupying the middle ground. By themselves, none of these features are sufficient to define classes of interneurons. The challenge will be to determine which features belong together and how cell type-specific feature combinations are genetically specified.


Experimental Brain Research | 1990

Conserved patterns of cortico-cortical connections define areal hierarchy in rat visual cortex

T. A. Coogan; Andreas Burkhalter

SummaryThe prevalence of reciprocal connections in the cerebral cortex indicates that they play a fundamental role in the processing of sensory information. We have investigated the laminar termination patterns of such paired connections between different visual cortical areas of the rat, and have found two basic projection types: one which includes layer 4 and a second which includes layer 1 and avoids layer 4. The projections from primary visual cortex (area 17) to extrastriate visual cortical targets in the cytoarchitectonical areas 18a and 18b, and from 18a to a site in 18b, are of the first type. In contrast, the return projections from 18a and 18b to area 17 and from 18b to 18a, are of the second type. Thus each pair of connections has one element of each type, giving every circuit a nearly identical asymmetric structure. These laminar patterns resemble those of forward and feedback connections in primate cortex, indicating that cortico-cortical connectivity patterns are highly conserved through evolution, and that, as in monkeys, these connections define a hierarchical organization of areas in rat visual cortex.

Collaboration


Dive into the Andreas Burkhalter's collaboration.

Top Co-Authors

Avatar

Lawrence Tychsen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yuri Gonchar

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Quanxin Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeanne M. Nerbonne

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Van Essen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Dolores Bradley

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Paul Foeller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge