Andreas Chlond
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Chlond.
Monthly Weather Review | 2005
Bjorn Stevens; Chin-Hoh Moeng; Andrew S. Ackerman; Christopher S. Bretherton; Andreas Chlond; Stephan R. de Roode; James Edwards; Jean-Christophe Golaz; Hongli Jiang; Marat Khairoutdinov; M.P. Kirkpatrick; D. C. Lewellen; A. P. Lock; Frank Müller; David E. Stevens; Eoin Whelan; Ping Zhu
Data from the first research flight (RF01) of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study are used to evaluate the fidelity with which large-eddy simulations (LESs) can represent the turbulent structure of stratocumulus-topped boundary layers. The initial data and forcings for this case placed it in an interesting part of parameter space, near the boundary where cloud-top mixing is thought to render the cloud layer unstable on the one hand, or tending toward a decoupled structure on the other hand. The basis of this evaluation consists of sixteen 4-h simulations from 10 modeling centers over grids whose vertical spacing wa s5ma t thecloud-top interface and whose horizontal spacing was 35 m. Extensive sensitivity studies of both the configuration of the case and the numerical setup also enhanced the analysis. Overall it was found that (i) if efforts are made to reduce spurious mixing at cloud top, either by refining the vertical grid or limiting the effects of the subgrid model in this region, then the observed turbulent and thermodynamic structure of the layer can be reproduced with some fidelity; (ii) the base, or native configuration of most simulations greatly overestimated mixing at cloud top, tending toward a decoupled layer in which cloud liquid water path and turbulent intensities were grossly underestimated; (iii) the sensitivity of the simulations to the representation of mixing at cloud top is, to a certain extent, amplified by particulars of this case. Overall the results suggest that the use of LESs to map out the behavior of the stratocumulus-topped boundary layer in this interesting region of parameter space requires a more compelling representation of processes at cloud top. In the absence of significant leaps in the understanding of subgrid-scale (SGS) physics, such a representation can only be achieved by a significant refinement in resolution—a refinement that, while conceivable given existing resources, is probably still beyond the reach of most centers.
Journal of the Atmospheric Sciences | 2001
Bjoern Stevens; A. S. Ackerman; B. A. Albrecht; A. R. Brown; Andreas Chlond; J. Cuxart; P. G. Duynkerke; D. C. Lewellen; M. K. Macvean; A. J. Neggers; Enrique Sánchez; A. P. Siebesma; D. E. Stevens
The fifth intercomparison of the Global Water and Energy Experiment Cloud System Studies Working Group 1 is used as a vehicle for better understanding the dynamics of trade wind cumuli capped by a strong inversion. The basis of the intercomparison is 10 simulations by 7 groups. These simulations are supplemented by many further sensitivity studies, including some with very refined grid meshes. The simulations help illustrate the turbulent dynamics of trade cumuli in such a regime. In many respects the dynamics are similar to those found in many previous simulations of trade cumuli capped by weaker inversions. The principal differences are the extent to which the cloud layer is quasi-steady in the current simulations, evidence of weak countergradient momentum transport within the cloud layer, and the development and influence of an incipient stratiform cloud layer at the top of the cloud layer. Although many elements of the turbulent structure (including the wind profiles, the evolution of cloud-base height, the statistics of the subcloud layer, and the nature of mixing in the lower and middle parts of the cloud layer) are robustly predicted, the representation of the stratiform cloud amount by the different simulations is remarkably sensitive to a number of factors. Chief among these are differences between numerical algorithms. These sensitivities persist even among simulations on relatively refined grid meshes. Part of this sensitivity is attributed to a physically realistic positive radiative feedback, whereby a propensity toward higher cloud fractions in any given simulation is amplified by longwave radiative cooling. The simulations also provide new insight into the dynamics of the transition layer at cloud base. In accord with observations, the simulations predict that this layer is most identifiable in terms of moisture variances and gradients. The simulations help illustrate the highly variable (in both height and thickness) nature of the transition layer, and we speculate that this variability helps regulate convection. Lastly the simulations are used to help evaluate simple models of trade wind boundary layers. In accord with previous studies, mass-flux models well represent the dynamics of the cloud layer, while mixing-length models well represent the subcloud layer. The development of the stratiform cloud layer is not, however, captured by the mass-flux models. The simulations indicate that future theoretical research needs to focus on interface rules, whereby the cloud layer is coupled to the subcloud layer below and the free atmosphere above. Future observational studies of this regime would be of most benefit if they could provide robust cloud statistics as a function of mean environmental conditions.
Quarterly Journal of the Royal Meteorological Society | 2002
A. R. Brown; Richard T. Cederwall; Andreas Chlond; Peter G. Duynkerke; J. C. Golaz; Marat Khairoutdinov; D. C. Lewellen; A. P. Lock; M. K. Macvean; Chin-Hoh Moeng; Roel Neggers; A. P. Siebesma; Bjorn Stevens
SUMMARY Large-eddy simulations of the development of shallow cumulus convection over land are presented. Many characteristics of the cumulus layer previously found in simulations of quasi-steady convection over the sea are found to be reproduced in this more strongly forced, unsteady case. Furthermore, the results are shown to be encouragingly robust, with similar results obtained with eight independent models, and also across a range of numerical resolutions. The datasets produced are already being used in the development and evaluation of parametrizations used in numerical weather-prediction and climate models.
Monthly Weather Review | 2009
Andrew S. Ackerman; M. C. vanZanten; Bjorn Stevens; Verica Savic-Jovcic; Christopher S. Bretherton; Andreas Chlond; Jean-Christophe Golaz; Hongli Jiang; Marat Khairoutdinov; Steven K. Krueger; D. C. Lewellen; A. P. Lock; Chin-Hoh Moeng; Kozo Nakamura; Markus D. Petters; Jefferson R. Snider; Sonja Weinbrecht; Mike A. Zulauf
Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.
Boundary-Layer Meteorology | 1992
Andreas Chlond
A three-dimensional numerical model is used to study boundary-layer eddy structure during a cold air outbreak. The model explicitly represents the large-scale three-dimensional motions, while small-scale turbulence is parameterized; it contains a water cycle with cloud formation and it takes into account infrared radiative cooling in cloudy conditions and the influence of large-scale vertical motions.The model is applied to conditions corresponding to an observed case of cloud street/stratocumulus development which occurred over the Greenland Sea during the ARKTIS 1988 experiment. The boundary layer is found to grow rapidly as the cold air flows off the ice over the relatively warm water. Coherent structures were identified in this boundary layer. It is found that the rolls become increasingly more convective in character with distance from the ice edge. Qualitative and quantitative descriptions of the flow field are given. Additionally, the relative importance of the various physical processes and external parameters in the evolution of the mean field of variables is indicated.
Monthly Weather Review | 2005
Ping Zhu; Christopher S. Bretherton; M. Kohler; Anning Cheng; Andreas Chlond; Quanzhen Geng; Phil Austin; Jean-Christophe Golaz; Geert Lenderink; A. P. Lock; Bjorn Stevens
Ten single-column models (SCMs) from eight groups are used to simulate a nocturnal nonprecipitating marine stratocumulus-topped mixed layer as part of an intercomparison organized by the Global Energy and Water Cycle Experiment Cloud System Study, Working Group 1. The case is idealized from observations from the Dynamics and Chemistry of Marine Stratocumulus II, Research Flight 1. SCM simulations with operational resolution are supplemented by high-resolution simulations and compared with observations and large-eddy simulations. All participating SCMs are able to maintain a sharp inversion and a mixed cloud-topped layer, although the moisture profiles show a slight gradient in the mixed layer and produce entrainment rates broadly consistent with observations, but the liquid water paths vary by a factor of 10 after onl y1ho fsimulation at both high and operational resolution. Sensitivity tests show insensitivity to activation of precipitation and shallow convection schemes in most models, as one would observationally expect for this case.
Boundary-Layer Meteorology | 1996
Gerd Müller; Andreas Chlond
The boundary-layer development and convection-pattern transition typically occurring in cold-air outbreaks is studied using three-dimensional simulations. The simulations include the secondary-flow transition starting with the relatively small-scale boundary-layer rolls developing during the initial phase and ending with mesoscale cellular convection patterns. The application of a computational grid, whose horizontal mesh size enables the resolution of the small-scale initial patterns and whose domain size is large enough to capture mesoscale convection patterns, overcharges even state-of-the-art supercomputers. In order to bypass the computer storage problem, the horizontal size of the model domain and the horizontal resolution of the computational grid are adjusted to the scale of the dominant convective structures. This enables the simulation of convection cells whose horizontal scales increase up to values exceeding the size of the initial model domain.The model is applied to conditions of a cold-air outbreak observed during the ARKTIS 1991 experiment. The most important characteristics of the observed situation are revealed by the model. Sensitivity studies are performed in order to investigate the relation between cell broadening and various physical processes. The artificial cutoff of liquid-water formation prevents the enlargement of convective scales. Latent heating due to condensation and especially radiative cloud-top cooling are identified as processes leading to cell broadening. We propose a conceptual model that elucidates the mechanism by which cloud-top cooling may generate larger aspect ratios.
Journal of the Atmospheric Sciences | 1998
Andreas Chlond
Numerical simulations of contrails have been performed to investigate the role of various external parameters and physical processes in the life cycle of contrails. The general idea underlying the model is that of a largeeddy model. The model explicitly represents the large-scale three-dimensional motions (10-m grid resolution), while small-scale turbulence is parameterized; it contains a detailed microphysical model and it takes into account infrared radiative cooling in cloudy conditions and the vertical shear of the ambient flow. The model is applied to conditions typical for those under which contrails could be observed, that is, in an atmosphere which is supersaturated with respect to ice and at a temperature of 220 K. The simulations begin in the late dispersion phase (i.e., about 10 3 s after exhaust) and trace the evolution of the contrails for a halfhour period. Coherent structures can be identified within these clouds with vertical velocity fluctuations of the order of 0.1 m s21 that are generated mainly by buoyancy due to latent heat release. In addition, the sensitivity runs undertaken as a test of the model to a change in significant physical processes or external parameters indicate that the contrail evolution is controled primarily by humidity, temperature, and static stability of the ambient air and secondarily by the baroclinicity of the atmosphere. Moreover, it turns out that the initial ice particle concentration and radiative processes are of minor importance in the evolution of contrails, at least during the 30-min simulation period.
Journal of Geophysical Research | 2007
Matthew C. Wyant; Christopher S. Bretherton; Andreas Chlond; Brian M. Griffin; Hiroto Kitagawa; Cara-Lyn Lappen; Vincent E. Larson; A. P. Lock; Sungsu Park; Stephan R. de Roode; Junya Uchida; Ming Zhao; Andrew S. Ackerman
Received 12 February 2007; revised 11 July 2007; accepted 2 August 2007; published 27 December 2007. [1] This study presents an intercomparison of single-column model simulations of a nocturnal heavily drizzling marine stratocumulus-topped boundary layer. Initial conditions and forcings are based on nocturnal flight observations off the coast of California during the DYCOMS-II field experiment. Differences in turbulent and microphysical parameterizations between models were isolated by slightly idealizing and standardizing the specification of surface and radiative fluxes. For most participating models, the case was run at both typical operational vertical resolution of about 100 m and also at high vertical resolution of about 10 m. As in prior stratocumulus intercomparisons, the simulations quickly develop considerable scatter in liquid water path (LWP) between models. However, the simulated dependence of cloud base drizzle fluxes on LWP in most models is broadly consistent with recent observations. Sensitivity tests with drizzle turned off show that drizzle substantially decreases LWP for many models. The sensitivity of entrainment rate to drizzle is more muted. Simulated LWP and entrainment are also sensitive to the inclusion of cloud droplet sedimentation. Many models underestimate the fraction of drizzle that evaporates below cloud base, which may distort the simulated feedbacks of drizzle on turbulence, entrainment, and LWP.
Monthly Weather Review | 1994
Andreas Chlond
Abstract A simple and effective self-adjusting hybrid technique has been introduced to develop a new conservative and monotonic advection scheme that exhibits very low numerical diffusion of resolvable scales. The proposed scheme combines Botts area-preserving flux-form algorithm with an area-preserving exponential interpolating scheme, the use of either at any particular location being automatically controlled by the local ratio of the nodal values involved in the approximation process. The performance of the combined scheme is illuminated in a series of one- and two-dimensional linear advection experiments. The comparative test calculations presented demonstrate that the combined scheme provides highly accurate solutions both in regions where the transported flow variable is smooth and in the vicinity of sharp gradients. Furthermore, the self-adjusting hybrid technique is highly effective in removing numerical artifacts such as dispersive ripples and simultaneously requires only an admissible additiona...