Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erich Roeckner is active.

Publication


Featured researches published by Erich Roeckner.


Journal of Climate | 2006

Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison

Pierre Friedlingstein; Peter M. Cox; Richard A. Betts; Laurent Bopp; W. von Bloh; Victor Brovkin; P. Cadule; Scott C. Doney; Michael Eby; Inez Y. Fung; G. Bala; Jasmin G. John; Chris D. Jones; Fortunat Joos; Tomomichi Kato; Michio Kawamiya; Wolfgang Knorr; Keith Lindsay; H. D. Matthews; Thomas Raddatz; P. J. Rayner; Christian H. Reick; Erich Roeckner; K.-G. Schnitzler; Reiner Schnur; Kuno M. Strassmann; Andrew J. Weaver; Chisato Yoshikawa; Ning Zeng

Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C. All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.


Nature | 1999

Increased El Niño frequency in a climate model forced by future greenhouse warming

Axel Timmermann; J. M. Oberhuber; A. Bacher; Monika Esch; Mojib Latif; Erich Roeckner

The El Niño/Southern Oscillation (ENSO) phenomenon is the strongest natural interannual climate fluctuation. ENSO originates in the tropical Pacific Ocean and has large effects on the ecology of the region, but it also influences the entire global climate system and affects the societies and economies of manycountries. ENSO can be understood as an irregular low-frequency oscillation between a warm (El Niño) and a cold (La Niña) state. The strong El Niños of 1982/1983 and 1997/1998, along with the more frequent occurrences of El Niños during the past few decades, raise the question of whether human-induced ‘greenhouse’ warming affects, or will affect, ENSO. Several global climate models have been applied to transient greenhouse-gas-induced warming simulations to address this question, but the results have been debated owing to the inability of the models to fully simulate ENSO (because of their coarse equatorial resolution). Here we present results from a global climate model with sufficient resolution in the tropics to adequately represent the narrow equatorial upwelling and low-frequency waves. When the model is forced by a realistic future scenario of increasing greenhouse-gas concentrations, more frequent El-Niño-like conditions and stronger cold events in the tropical Pacific Ocean result.


Journal of Climate | 2006

Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model

Erich Roeckner; Renate Brokopf; Monika Esch; Marco A. Giorgetta; Stefan Hagemann; Luis Kornblueh; Elisa Manzini; U. Schlese; Uwe Schulzweida

Abstract The most recent version of the Max Planck Institute for Meteorology atmospheric general circulation model, ECHAM5, is used to study the impact of changes in horizontal and vertical resolution on seasonal mean climate. In a series of Atmospheric Model Intercomparison Project (AMIP)-style experiments with resolutions ranging between T21L19 and T159L31, the systematic errors and convergence properties are assessed for two vertical resolutions. At low vertical resolution (L19) there is no evidence for convergence to a more realistic climate state for horizontal resolutions higher than T42. At higher vertical resolution (L31), on the other hand, the root-mean-square errors decrease monotonically with increasing horizontal resolution. Furthermore, except for T42, the L31 versions are superior to their L19 counterparts, and the improvements become more evident at increasingly higher horizontal resolutions. This applies, in particular, to the zonal mean climate state and to the stationary wave patterns i...


Journal of Climate | 2006

Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM

Johann H. Jungclaus; Noel Keenlyside; Michael Botzet; Helmuth Haak; Jing-Jia Luo; Mojib Latif; Jochem Marotzke; Uwe Mikolajewicz; Erich Roeckner

Abstract This paper describes the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere–ocean general circulation model (AOGCM). Results are presented from a version of the coupled model that served as a prototype for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations. The model does not require flux adjustment to maintain a stable climate. A control simulation with present-day greenhouse gases is analyzed, and the simulation of key oceanic features, such as sea surface temperatures (SSTs), large-scale circulation, meridional heat and freshwater transports, and sea ice are compared with observations. A parameterization that accounts for the effect of ocean currents on surface wind stress is implemented in the model. The largest impact of this parameterization is in the tropical Pacific, where the mean state is significantly improved: the strength of the trade winds and the associated...


Journal of Climate | 2006

Tropical Intraseasonal Variability in 14 IPCC AR4 Climate Models Part I: Convective Signals

Jia-Lin Lin; George N. Kiladis; Brian E. Mapes; Klaus M. Weickmann; Kenneth R. Sperber; Wuyin Lin; Matthew C. Wheeler; Siegfried D. Schubert; Anthony D. Del Genio; Leo J. Donner; Seita Emori; Jean-Francois Gueremy; Frederic Hourdin; Philip J. Rasch; Erich Roeckner; J. F. Scinocca

Abstract This study evaluates the tropical intraseasonal variability, especially the fidelity of Madden–Julian oscillation (MJO) simulations, in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of daily precipitation from each model’s twentieth-century climate simulation are analyzed and compared with daily satellite-retrieved precipitation. Space–time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby–gravity (MRG), and eastward inertio–gravity (EIG) and westward inertio–gravity (WIG) waves. The variance and propagation of the MJO, defined as the eastward wavenumbers 1–6, 30–70-day mode, are examined in detail. The results show that current state-of-the-art GCMs still have significant problems and display a wide range of skill in simulating the tropical intraseasonal va...


Journal of Climate | 2006

Storm Tracks and Climate Change

Lennart Bengtsson; Kevin I. Hodges; Erich Roeckner

Abstract Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by observed boundary conditions, produces results that agree well with analyses from the 40-yr ECMWF Re-Analysis (ERA-40), including the distribution of storms as a function of maximum intensity. This provides the authors with confidence in the use of the model for the climate change experiments. The statistical distribution of storm intensities is virtually preserved under climate change using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario until the end of this century. There are no indications in this study of more intense storms in the future climate, either in the Tropics or extratropics, but rather a minor reduction in the number of weaker storms. However, significant changes occur on a regional ...


Nature | 2008

Advancing Decadal-Scale Climate Prediction in the North Atlantic Sector

Noel Keenlyside; Mojib Latif; Johann H. Jungclaus; Luis Kornblueh; Erich Roeckner

The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach—that uses only sea surface temperature (SST) observations—to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.


Journal of the Atmospheric Sciences | 1989

The Effect of Eurasian Snow Cover on Regional and Global Climate Variations

Tim P. Barnett; L. Dümenil; U. Schlese; Erich Roeckner; Mojib Latif

The sensitivity of the global climate system to interannual variability of he Eurasian snow cover has been investigated with numerical models. It was found that heavier than normal Eurasian snow cover in spring leads to a “poor” monsoon over Southeast Asia thereby verifying an idea over 100 years old. The poor monsoon was characterized by reduced rainfall over India and Burma, reduced wind stress over the Indian Ocean, lower than normal temperatures on the Asian land mass and in the overlying atmospheric column, reduced tropical jet, increased soil moisture, and other features associated with poor monsoons. Lighter than normal snow cover led to a “good” monsoon with atmospheric anomalies like those described above but of opposite sign. Remote responses from the snow field perturbation include readjustment of the Northern Hemispheric mass field in midlatitude, an equatorially symmetric response of the tropical geopotential height and temperature field and weak, but significant, perturbations in the surface wind stress and heat flux in the tropical Pacific. The physics responsible for the regional response involves all elements of both the surface heat budget and heat budget of the full atmospheric column. In essence, the snow, soil and atmospheric moisture all act to keep the land and overlying atmospheric column colder than normal during a heavy snow simulation thus reducing the land–ocean temperature contrast needed to initiate the monsoon. The remote responses are driven by heating anomalies associated with both large scale air-sea interactions and precipitation events. The model winds from the heavy snow experiment were used to drive an ocean model. The SST field in that model developed a weak El Nino in the equatorial Pacific. A coupled ocean-atmosphere model simulation perturbed only by anomalous Eurasian snow cover was also run and it developed a much stranger El Nino in the Pacific. The coupled system clearly amplified the wind stress anomaly associated with the poor monsoon. These results show the important role of an evolving (not specified) sea surface temperature in numerical experiments and the real climate system. Our general results also demonstrate the importance of land processes in global climate dynamics and their possible role as one of the factors that could trigger ENSO events.


Journal of Climate | 1999

Transient Climate Change Simulations with a Coupled Atmosphere–Ocean GCM Including the Tropospheric Sulfur Cycle

Erich Roeckner; Lennart Bengtsson; Johann Feichter; J. Lelieveld; Henning Rodhe

Abstract The time-dependent climate response to changing concentrations of greenhouse gases and sulfate aerosols is studied using a coupled general circulation model of the atmosphere and the ocean (ECHAM4/OPYC3). The concentrations of the well-mixed greenhouse gases like CO2, CH4, N2O, and CFCs are prescribed for the past (1860–1990) and projected into the future according to International Panel on Climate Change (IPCC) scenario IS92a. In addition, the space–time distribution of tropospheric ozone is prescribed, and the tropospheric sulfur cycle is calculated within the coupled model using sulfur emissions of the past and projected into the future (IS92a). The radiative impact of the aerosols is considered via both the direct and the indirect (i.e., through cloud albedo) effect. It is shown that the simulated trend in sulfate deposition since the end of the last century is broadly consistent with ice core measurements, and the calculated radiative forcings from preindustrial to present time are within th...


Climate Dynamics | 1996

Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model

Ulrike Lohmann; Erich Roeckner

A new cloud microphysics scheme including a prognostic treatment of cloud ice (PCI) is developed to yield a more physically based representation of the components of the atmospheric moisture budget in the general circulation model ECHAM. The new approach considers cloud water and cloud ice as separate prognostic variables. The precipitation formation scheme for warm clouds distinguishes between maritime and continental clouds by considering the cloud droplet number concentration, in addition to the liquid water content. Based on several observational data sets, the cloud droplet number concentration is derived from the sulfate aerosol mass concentration as given from the sulfur cycle simulated by ECHAM. Results obtained with the new scheme are compared to satellite observations and in situ measurements of cloud physical and radiative properties. In general, the standard model ECHAM4 and also PCI capture the overall features, and the simulated results usually lie within the range of observed uncertainty. As compared to ECHAM4, only slight improvements are achieved with the new scheme. For example, the overestimated liquid water path and total cloud cover over convectively active regions are reduced in PCI. On the other hand, some shortcomings of the standard model such as underestimated shortwave cloud forcing over the extratropical oceans of the respective summer hemisphere are more pronounced in PCI.

Collaboration


Dive into the Erich Roeckner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Cubasch

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge