Andreas Diefenbach
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Diefenbach.
Nature | 2001
Andreas Diefenbach; Eric R. Jensen; Amanda M. Jamieson; David H. Raulet
Natural killer (NK) cells attack many tumour cell lines, and are thought to have a critical role in anti-tumour immunity; however, the interaction between NK cells and tumour targets is poorly understood. The stimulatory lectin-like NKG2D receptor is expressed by NK cells, activated CD8+ T cells and by activated macrophages in mice. Several distinct cell-surface ligands that are related to class I major histocompatibility complex molecules have been identified, some of which are expressed at high levels by tumour cells but not by normal cells in adults. However, no direct evidence links the expression of these ‘induced self’ ligands with tumour cell rejection. Here we demonstrate that ectopic expression of the murine NKG2D ligands Rae1β or H60 in several tumour cell lines results in potent rejection of the tumour cells by syngeneic mice. Rejection is mediated by NK cells and/or CD8+ T cells. The ligand-expressing tumour cells induce potent priming of cytotoxic T cells and sensitization of NK cells in vivo. Mice that are exposed to live or irradiated tumour cells expressing Rae1 or H60 are specifically immune to subsequent challenge with tumour cells that lack NKG2D ligands, suggesting application of the ligands in the design of tumour vaccines.
Nature Immunology | 2000
Andreas Diefenbach; Amanda M. Jamieson; Scot D. Liu; Nilabh Shastri; David H. Raulet
Natural killer (NK) cells attack tumor and infected cells, but the receptors and ligands that stimulate them are poorly understood. Here we report the expression cloning of two murine ligands for the lectin-like receptor NKG2D. The two ligands, H-60 and Rae1β, are distant relatives of major histocompatibility complex class I molecules. NKG2D ligands are not expressed by most normal cells but are up-regulated on numerous tumor cells. We show that mouse NKG2D is expressed by NK cells, activated CD8+ T cells and activated macrophages. Expression of either NKG2D ligand by target cells triggers NK cell cytotoxicity and interferon-γ secretion by NK cells, as well as nitric oxide release and tumor necrosis factor α transcription by macrophages. Thus, through their interaction with NKG2D, H-60 and Rae1β are newly identified potent stimulators of innate immunity.
Current Opinion in Immunology | 2000
Christian Bogdan; Martin Röllinghoff; Andreas Diefenbach
Nitric oxide, nitric oxide derivatives and reactive oxygen intermediates are toxic molecules of the immune system which contribute to the control of microbial pathogens and tumors. There is recent evidence for additional functions of these oxygen metabolites in innate and adaptive immunity; these functions include the modulation of the cytokine response of lymphocytes and the regulation of immune cell apoptosis, as well as immunodeviating effects. Components of several signal transduction pathways have been identified as intracellular targets for reactive nitrogen and oxygen intermediates.
Nature Immunology | 2009
Stephanie L. Sanos; Viet L. Bui; Arthur Mortha; Karin Oberle; Charlotte Heners; Caroline Johner; Andreas Diefenbach
The mucosal immune system of the intestine is separated from a vast array of microbes by a single layer of epithelial cells. Cues from the commensal microflora are needed to maintain epithelial homeostasis, but the molecular and cellular identities of these cues are unclear. Here we provide evidence that signals from the commensal microflora contribute to the differentiation of a lymphocyte population coexpressing stimulatory natural killer cell receptors and the transcription factor RORγt that produced interleukin 22 (IL-22). The emergence of these IL-22-producing RORγthiNKp46+NK1.1int cells depended on RORγt expression, which indicated that these cells may have been derived from lymphoid tissue–inducer cells. IL-22 released by these cells promoted the production of antimicrobial molecules important in the maintenance of mucosal homeostasis.
Immunity | 2002
Amanda M. Jamieson; Andreas Diefenbach; Christopher W. McMahon; Na Xiong; James R. Carlyle; David H. Raulet
Little is known concerning the stimulatory receptors responsible for tumor cell lysis by NK cells. We generated a monoclonal antibody specific for murine NKG2D in order to investigate its function. Blocking of NKG2D inhibited natural cytotoxicity of all tumor cells tested that express ligands for the receptor. Staining analysis showed that NKG2D is also expressed by activated CD8(+) T cells and macrophages, and subsets of TCRgammadelta(+) and NK1.1(+) T cells. Contradicting reports that NKG2D is solely a costimulatory receptor, we observed that cross-linking of NKG2D directly stimulates NK cells and activated macrophages. In contrast, NKG2D costimulates activated CD8(+) T cells. Thus, NKG2D engagement directly stimulates NK cells and macrophages, costimulates CD8(+) T cells, and plays a substantial role in natural killing.
Immunological Reviews | 2000
Christian Bogdan; Martin Röllinghoff; Andreas Diefenbach
Acknowledgments:
Nature Immunology | 2002
Andreas Diefenbach; Elena Tomasello; Mathias Lucas; Amanda M. Jamieson; Jennifer K. Hsia; Eric Vivier; David H. Raulet
Optimal lymphocyte activation requires the simultaneous engagement of stimulatory and costimulatory receptors. Stimulatory immunoreceptors are usually composed of a ligand-binding transmembrane protein and noncovalently associated signal-transducing subunits. Here, we report that alternative splicing leads to two distinct NKG2D polypeptides that associate differentially with the DAP10 and KARAP (also known as DAP12) signaling subunits. We found that differential expression of these isoforms and of signaling proteins determined whether NKG2D functioned as a costimulatory receptor in the adaptive immune system (CD8+ T cells) or as both a primary recognition structure and a costimulatory receptor in the innate immune system (natural killer cells and macrophages). This strategy suggests a rationale for the multisubunit structure of stimulatory immunoreceptors.
Immunological Reviews | 2002
Andreas Diefenbach; David H. Raulet
Summary: Recent genetic studies have resurrected the concept that the adaptive and innate immune systems play roles in tumor surveillance. Natural killer (NK) cells recognize many tumor cells but not normal self cells, and they are thought to aid in the elimination of nascent tumors. Two main strategies are employed by NK cells to recognize tumor targets. Many tumor cells down‐regulate class I major histocompatibility complex (MHC) molecules, thus releasing the NK cell from the inhibition provided by class I MHC‐specific inhibitory receptors (‘missing self recognition’). More recently, it has become clear that a stimulatory receptor expressed by NK cells, T cells and macrophages (NKG2D) recognizes ligands (MHC class I chain related [MIC], H6O, retinoic acid early inducible [Rae1] and UL16 binding proteins [ULBP]) that are up‐regulated on tumor cells and virally infected cells but are not expressed well by normal cells. Ectopic expression of these ligands on tumor cells leads to the potent rejection of the tumors in vivo. Importantly, mice that previously rejected the ligand+ tumor cells develop T‐cell immunity to the parental (ligand–) tumor cells. The recognition of induced‐self ligands as a strategy to recognize abnormal self sets a precedent for a new immune recognition strategy of the innate immune system.
Immunological Reviews | 2001
Andreas Diefenbach; David H. Raulet
Summary: Stimulation of natural killer (NK) cells is regulated by a complex balance of inhibitory and stimulatory receptors expressed by NK cells. However, the interaction of stimulatory receptors and their ligands is poorly understood. One stimulatory receptor, NKG2D, is expressed by all NK cells, stimulated CD8+ T cells, γδ T cells and macrophages. Recently, progress has been made in defining cellular ligands for NKG2D. Four different families of ligands have been identified in mice and humans, all of which are distantly related to MHC class I molecules. Some of the ligands are upregulated in transformed and infected cells, provoking an attack by the innate and adaptive immune systems. It appears that these “induced‐self” ligands recognized by the NKG2D receptor may be a precedent for a new strategy of target cell recognition by the immune system.
Journal of Immunology | 2002
Yoshihiro Hayakawa; Janice M. Kelly; Jennifer A. Westwood; Phillip K. Darcy; Andreas Diefenbach; David H. Raulet; Mark J. Smyth
We have investigated the primary immunity generated in vivo by MHC class I-deficient and -competent tumor cell lines that expressed the NKG2D ligand retinoic acid early inducible-1 (Rae-1) β. Rae-1β expression on class I-deficient RMA-S lymphoma cells enhanced primary NK cell-mediated tumor rejection in vivo, whereas RMA-Rae-1β tumor cells were rejected by a combination of NK cells and CD8+ T cells. Rae-1β expression stimulated NK cell cytotoxicity and IFN-γ secretion in vitro, but not proliferation. Surprisingly, only NK cell perforin-mediated cytotoxicity, but not production of IFN-γ, was critical for the rejection of Rae-1β-expressing tumor cells in vivo. This distinct requirement for perforin activity contrasts with the NK cell-mediated rejection of MHC class I-deficient RMA-S tumor cells expressing other activating ligands such as CD70 and CD80. Thus, these results indicated that NKG2D acted as a natural cytotoxicity receptor to stimulate perforin-mediated elimination of ligand-expressing tumor cells.