Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Ettinger is active.

Publication


Featured researches published by Andreas Ettinger.


Nature Communications | 2011

Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour

Andreas Ettinger; Michaela Wilsch-Bräuninger; Anne Marie Marzesco; Marc Bickle; Annett Lohmann; Zoltan Maliga; Jana Karbanová; Denis Corbeil; Anthony A. Hyman; Wieland B. Huttner

The central portion of the midbody, a cytoplasmic bridge between nascent daughter cells at the end of cell division, has generally been thought to be retained by one of the daughter cells, but has, recently, also been shown to be released into the extracellular space. The significance of midbody-retention versus -release is unknown. Here we show, by quantitatively analysing midbody-fate in various cell lines under different growth conditions, that the extent of midbody-release is significantly greater in stem cells than cancer-derived cells. Induction of cell differentiation is accompanied by an increase in midbody-release. Knockdown of the endosomal sorting complex required for transport family members, Alix and tumour-suppressor gene 101, or of their interaction partner, centrosomal protein 55, impairs midbody-release, suggesting mechanistic similarities to abscission. Cells with such impaired midbody-release exhibit enhanced responsiveness to a differentiation stimulus. Taken together, midbody-release emerges as a characteristic feature of cells capable of differentiation.


Nature Cell Biology | 2014

CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover

Samantha J. Stehbens; Matthew Paszek; Hayley Pemble; Andreas Ettinger; Sarah Gierke; Torsten Wittmann

Turnover of integrin-based focal adhesions (FAs) with the extracellular matrix (ECM) is essential for coordinated cell movement. In collectively migrating human keratinocytes, FAs assemble near the leading edge, grow and mature as a result of contractile forces and disassemble underneath the advancing cell body. We report that clustering of microtubule-associated CLASP1 and CLASP2 proteins around FAs temporally correlates with FA turnover. CLASPs and LL5β (also known as PHLDB2), which recruits CLASPs to FAs, facilitate FA disassembly. CLASPs are further required for FA-associated ECM degradation, and matrix metalloprotease inhibition slows FA disassembly similarly to CLASP or PHLDB2 (LL5β) depletion. Finally, CLASP-mediated microtubule tethering at FAs establishes an FA-directed transport pathway for delivery, docking and localized fusion of exocytic vesicles near FAs. We propose that CLASPs couple microtubule organization, vesicle transport and cell interactions with the ECM, establishing a local secretion pathway that facilitates FA turnover by severing cell–matrix connections.


Nature Cell Biology | 2013

A genomic toolkit to investigate kinesin and myosin motor function in cells

Zoltan Maliga; Magno Junqueira; Yusuke Toyoda; Andreas Ettinger; Felipe Mora-Bermúdez; Robin W. Klemm; Andrej Vasilj; Elaine Guhr; Itziar Ibarlucea-Benitez; Ina Poser; Ezio Bonifacio; Wieland B. Huttner; Andrej Shevchenko; Anthony A. Hyman

Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein–protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages.


Methods in Cell Biology | 2014

Fluorescence live cell imaging.

Andreas Ettinger; Torsten Wittmann

Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein (FP) tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate FP constructs by spinning disk confocal microscopy.


Developmental Cell | 2014

Parasympathetic innervation regulates tubulogenesis in the developing salivary gland.

Pavel I. Nedvetsky; Elaine Emmerson; Jennifer K. Finley; Andreas Ettinger; Noel Cruz-Pacheco; Jan Prochazka; Candace L. Haddox; Emily Northrup; Craig A. Hodges; Keith E. Mostov; Matthew P. Hoffman; Sarah M. Knox

A fundamental question in development is how cells assemble to form a tubular network during organ formation. In glandular organs, tubulogenesis is a multistep process requiring coordinated proliferation, polarization and reorganization of epithelial cells to form a lumen, and lumen expansion. Although it is clear that epithelial cells possess an intrinsic ability to organize into polarized structures, the mechanisms coordinating morphogenetic processes during tubulogenesis are poorly understood. Here, we demonstrate that parasympathetic nerves regulate tubulogenesis in the developing salivary gland. We show that vasoactive intestinal peptide (VIP) secreted by the innervating ganglia promotes ductal growth, leads to the formation of a contiguous lumen, and facilitates lumen expansion through a cyclic AMP/protein kinase A (cAMP/PKA)-dependent pathway. Furthermore, we provide evidence that lumen expansion is independent of apoptosis and involves the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl(-) channel. Thus, parasympathetic innervation coordinates multiple steps in tubulogenesis during organogenesis.


Trends in Cell Biology | 2013

Resurrecting remnants: The lives of post-mitotic midbodies

Chun-Ting Chen; Andreas Ettinger; Wieland B. Huttner

Around a century ago, the midbody (MB) was described as a structural assembly within the intercellular bridge during cytokinesis that served to connect the two future daughter cells. The MB has become the focus of intense investigation through the identification of a growing number of diverse cellular and molecular pathways that localize to the MB and contribute to its cytokinetic functions, ranging from selective vesicle trafficking and regulated microtubule (MT), actin, and endosomal sorting complex required for transport (ESCRT) filament assembly and disassembly to post-translational modification, such as ubiquitination. More recent studies have revealed new and unexpected functions of MBs in post-mitotic cells. In this review, we provide a historical perspective, discuss exciting new roles for MBs beyond their cytokinetic function, and speculate on their potential contributions to pluripotency.


Molecular and Cellular Biology | 2013

Loss of epithelial hypoxia-inducible factor prolyl hydroxylase 2 accelerates skin wound healing in mice.

Joanna Kalucka; Andreas Ettinger; Kristin Franke; Soulafa Mamlouk; Rashim Pal Singh; Katja Farhat; Antje Muschter; Susanne Olbrich; Georg Breier; Dörthe M. Katschinski; Wieland B. Huttner; Alexander Weidemann; Ben Wielockx

ABSTRACT Skin wound healing in mammals is a complex, multicellular process that depends on the precise supply of oxygen. Hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2) serves as a crucial oxygen sensor and may therefore play an important role during reepithelialization. Hence, this study was aimed at understanding the role of PHD2 in cutaneous wound healing using different lines of conditionally deficient mice specifically lacking PHD2 in inflammatory, vascular, or epidermal cells. Interestingly, PHD2 deficiency only in keratinocytes and not in myeloid or endothelial cells was found to lead to faster wound closure, which involved enhanced migration of the hyperproliferating epithelium. We demonstrate that this effect relies on the unique expression of β3-integrin in the keratinocytes around the tip of the migrating tongue in an HIF1α-dependent manner. Furthermore, we show enhanced proliferation of these cells in the stratum basale, which is directly related to their attenuated transforming growth factor β signaling. Thus, loss of the central oxygen sensor PHD2 in keratinocytes stimulates wound closure by prompting skin epithelial cells to migrate and proliferate. Inhibition of PHD2 could therefore offer novel therapeutic opportunities for the local treatment of cutaneous wounds.


Nucleic Acids Research | 2010

Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FlEx gene traps

Laura Schebelle; Claudia Wolf; Carola Stribl; Tahereh Javaheri; Frank Schnütgen; Andreas Ettinger; Zoltán Ivics; Jens Hansen; Patricia Ruiz; Harald von Melchner; Wolfgang Wurst; Thomas Floss

Recombinase-mediated cassette exchange (RMCE) exploits the possibility to unidirectionally exchange any genetic material flanked by heterotypic recombinase recognition sites (RRS) with target sites in the genome. Due to a limited number of available pre-fabricated target sites, RMCE in mouse embryonic stem (ES) cells has not been tapped to its full potential to date. Here, we introduce a universal system, which allows the targeted insertion of any given transcriptional unit into 85 742 previously annotated retroviral conditional gene trap insertions, representing 7013 independent genes in mouse ES cells, by RMCE. This system can be used to express any given cDNA under the control of endogenous trapped promoters in vivo, as well as for the generation of transposon ‘launch pads’ for chromosomal region-specific ‘Sleeping Beauty’ insertional mutagenesis. Moreover, transcription of the gene-of-interest is only activated upon Cre-recombinase activity, a feature that adds conditionality to this expression system, which is demonstrated in vivo. The use of the RMCE system presented in this work requires one single-cloning step followed by one overnight gateway clonase reaction and subsequent cassette exchange in ES cells with efficiencies of 40% in average.


Frontiers in Cellular Neuroscience | 2015

Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis

Yoko Arai; Julio L. Sampaio; Michaela Wilsch-Bräuninger; Andreas Ettinger; Christiane Haffner; Wieland B. Huttner

Midbody release from proliferative neural progenitor cells is tightly associated with the neuronal commitment of neural progenitor cells during the progression of neurogenesis in the mammalian cerebral cortex. While the central portion of the midbody, a cytoplasmic bridge between nascent daughter cells, is engulfed by one of the daughter cell by most cells in vitro, it is shown to be released into the extracellular cerebrospinal fluid (CF) in vivo in mouse embryos. Several proteins have been involved in midbody release; however, few studies have addressed the participation of the plasma membranes lipids in this process. Here, we show by Shotgun Lipidomic analysis that phosphatydylserine (PS), among other lipids, is enriched in the released midbodies compared to lipoparticles and cellular membranes, both collected from the CF of the developing mouse embryos. Moreover, the developing mouse embryo neural progenitor cells released two distinct types of midbodies carrying either internalized PS or externalized PS on their membrane. This strongly suggests that phagocytosis and an alternative fate of released midbodies exists. HeLa cells, which are known to mainly engulf the midbody show almost no PS exposure, if any, on the outer leaflet of the midbody membrane. These results point toward that PS exposure might be involved in the selection of recipients of released midbodies, either to be engulfed by daughter cells or phagocytosed by non-daughter cells or another cell type in the developing cerebral cortex.


Nature Cell Biology | 2018

Local control of intracellular microtubule dynamics by EB1 photodissociation

Jeffrey van Haren; Rabab A. Charafeddine; Andreas Ettinger; Hui Wang; Klaus M. Hahn; Torsten Wittmann

End-binding proteins (EBs) are adaptors that recruit functionally diverse microtubule plus-end-tracking proteins (+TIPs) to growing microtubule plus ends. To test with high spatial and temporal accuracy how, when and where +TIP complexes contribute to dynamic cell biology, we developed a photo-inactivated EB1 variant (π-EB1) by inserting a blue-light-sensitive protein–protein interaction module between the microtubule-binding and +TIP-binding domains of EB1. π-EB1 replaces endogenous EB1 function in the absence of blue light. By contrast, blue-light-mediated π-EB1 photodissociation results in rapid +TIP complex disassembly, and acutely and reversibly attenuates microtubule growth independent of microtubule end association of the microtubule polymerase CKAP5 (also known as ch-TOG and XMAP215). Local π-EB1 photodissociation allows subcellular control of microtubule dynamics at the second and micrometre scale, and elicits aversive turning of migrating cancer cells. Importantly, light-mediated domain splitting can serve as a template to optically control other intracellular protein activities.van Haren et al. develop a tool to rapidly dissociate proteins from the growing end of microtubules through photo-induced disassembly of end-binding protein 1 (EB1), and find that this reduces microtubule growth and alters cell migration.

Collaboration


Dive into the Andreas Ettinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey van Haren

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Hui Wang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Klaus M. Hahn

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Rabab A. Charafeddine

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Breier

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge