Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Torsten Wittmann is active.

Publication


Featured researches published by Torsten Wittmann.


Nature Cell Biology | 2001

The spindle: a dynamic assembly of microtubules and motors

Torsten Wittmann; Anthony A. Hyman; Arshad Desai

In all eukaryotes, a microtubule-based structure known as the spindle is responsible for accurate chromosome segregation during cell division. Spindle assembly and function require localized regulation of microtubule dynamics and the activity of a variety of microtubule-based motor proteins. Recent work has begun to uncover the molecular mechanisms that underpin this process. Here we describe the structural and dynamic properties of the spindle, and introduce the current concepts regarding how a bipolar spindle is assembled and how it functions to segregate chromosomes.


Journal of Biological Chemistry | 2004

Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1.

Torsten Wittmann; Gary M. Bokoch; Clare M. Waterman-Storer

In the leading edge of migrating cells, a subset of microtubules exhibits net growth in a Rac1- and p21-activated kinase-dependent manner. Here, we explore the possibility of whether phosphorylation and inactivation of the microtubule-destabilizing protein Op18/stathmin could be a mechanism regulating microtubule dynamics downstream of Rac1 and p21-activated kinases. We find that, in vitro, Pak1 phosphorylates Op18/stathmin specifically at serine 16 and inactivates its catastrophe promoting activity in biochemical and time lapse microscopy microtubule assembly assays. Furthermore, phosphorylation of either serine 16 or 63 is sufficient to inhibit Op18/stathmin in vitro. In cells, the microtubule-destabilizing effect of an excess of Op18/stathmin can be partially overcome by expression of constitutively active Rac1(Q61L), which is dependent on Pak activity, suggesting that the microtubule cytoskeleton can be regulated through inactivation of Op18/stathmin downstream of Rac1 and Pak in vivo. However, in vivo, Pak1 activity alone is not sufficient to phosphorylate Op18, indicating that additional pathways downstream of Rac1 are required for Op18 regulation.


Journal of Cell Biology | 2003

Regulation of leading edge microtubule and actin dynamics downstream of Rac1

Torsten Wittmann; Gary M. Bokoch; Clare M. Waterman-Storer

Actin in migrating cells is regulated by Rho GTPases. However, Rho proteins might also affect microtubules (MTs). Here, we used time-lapse microscopy of PtK1 cells to examine MT regulation downstream of Rac1. In these cells, “pioneer” MTs growing into leading-edge protrusions exhibited a decreased catastrophe frequency and an increased time in growth as compared with MTs further from the leading edge. Constitutively active Rac1(Q61L) promoted pioneer behavior in most MTs, whereas dominant-negative Rac1(T17N) eliminated pioneer MTs, indicating that Rac1 is a regulator of MT dynamics in vivo. Rac1(Q61L) also enhanced MT turnover through stimulation of MT retrograde flow and breakage. Inhibition of p21-activated kinases (Paks), downstream effectors of Rac1, inhibited Rac1(Q61L)-induced MT growth and retrograde flow. In addition, Rac1(Q61L) promoted lamellipodial actin polymerization and Pak-dependent retrograde flow. Together, these results indicate coordinated regulation of the two cytoskeletal systems in the leading edge of migrating cells.


Nature Cell Biology | 2000

Motor proteins regulate force interactions between microtubules and microfilaments in the axon

Fridoon J. Ahmad; Jessica Hughey; Torsten Wittmann; Anthony A. Hyman; Marion L. Greaser; Peter W. Baas

It has long been known that microtubule depletion causes axons to retract in a microfilament-dependent manner, although it was not known whether these effects are the result of motor-generated forces on these cytoskeletal elements. Here we show that inhibition of the motor activity of cytoplasmic dynein causes the axon to retract in the presence of microtubules. This response is obliterated if microfilaments are depleted or if myosin motors are inhibited. We conclude that axonal retraction results from myosin-mediated forces on the microfilament array, and that these forces are counterbalanced or attenuated by dynein-mediated forces between the microfilament and microtubule arrays.


Journal of Cell Biology | 2005

Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells

Torsten Wittmann; Clare M. Waterman-Storer

Proteins that in cells specifically bind to growing microtubule plus ends (+TIPs) are thought to play important roles in polarization of the cytoskeleton. However, most +TIPs do not show a bias of their microtubule-binding behavior toward different subcellular regions. Here, we examine the dynamics of the +TIP CLASP in migrating PtK1 epithelial cells. We find that, although CLASPs track microtubule plus ends in the cell body, they dynamically decorate the entire microtubule lattice in the leading edge lamella and lamellipodium. Microtubule lattice binding is mediated by the COOH-terminal region of the CLASP microtubule-binding domain and is regulated downstream of Rac1. Phosphorylation of sites in the NH2-terminal part of the microtubule-binding domain by glycogen synthase kinase 3β likely regulates the affinity of CLASPs for microtubule lattices. These results demonstrate the striking difference of the microtubule cytoskeleton in the lamella as compared with the cell body and provide the first direct observation of subcellular regulation of a microtubule-associated protein in migrating cells.


Nature Methods | 2010

Analysis of microtubule dynamic instability using a plus-end growth marker

Alexandre Matov; Kathryn T. Applegate; Praveen Kumar; Claudio R. Thoma; Wilhelm Krek; Gaudenz Danuser; Torsten Wittmann

Regulation of microtubule dynamics is essential for many cell biological processes and is likely to be variable between different subcellular regions. We describe a computational approach to analyze microtubule dynamics by detecting growing microtubule plus ends. Our algorithm tracked all EB1-EGFP comets visible in an image time-lapse sequence allowing the detection of spatial patterns of microtubule dynamics. We introduce spatiotemporal clustering of EB1-EGFP growth tracks to infer microtubule behaviors during phases of pause and shortening. We validated the algorithm by comparing the results to data for manually tracked, homogeneously labeled microtubules and by analyzing the effects of well-characterized inhibitors of microtubule polymerization dynamics. We used our method to analyze spatial variations of intracellular microtubule dynamics in migrating epithelial cells.


Journal of Cell Biology | 2009

GSK3β phosphorylation modulates CLASP–microtubule association and lamella microtubule attachment

Praveen Kumar; Karen S. Lyle; Sarah Gierke; Alexandre Matov; Gaudenz Danuser; Torsten Wittmann

Polarity of the microtubule (MT) cytoskeleton is essential for many cell functions. Cytoplasmic linker–associated proteins (CLASPs) are MT-associated proteins thought to organize intracellular MTs and display a unique spatiotemporal regulation. In migrating epithelial cells, CLASPs track MT plus ends in the cell body but bind along MTs in the lamella. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) directly phosphorylates CLASPs at multiple sites in the domain required for MT plus end tracking. Although complete phosphorylation disrupts both plus end tracking and association along lamella MTs, we show that partial phosphorylation of the identified GSK3β motifs determines whether CLASPs track plus ends or associate along MTs. In addition, we find that expression of constitutively active GSK3β destabilizes lamella MTs by disrupting lateral MT interactions with the cell cortex. GSK3β-induced lamella MT destabilization was partially rescued by expression of CLASP2 with mutated phosphorylation sites. This indicates that CLASP-mediated stabilization of peripheral MTs, which likely occurs in the vicinity of focal adhesions, may be regulated by local GSK3β inactivation.


Journal of Cell Biology | 2012

Targeting and transport: how microtubules control focal adhesion dynamics.

Samantha J. Stehbens; Torsten Wittmann

Directional cell migration requires force generation that relies on the coordinated remodeling of interactions with the extracellular matrix (ECM), which is mediated by integrin-based focal adhesions (FAs). Normal FA turnover requires dynamic microtubules, and three members of the diverse group of microtubule plus-end-tracking proteins are principally involved in mediating microtubule interactions with FAs. Microtubules also alter the assembly state of FAs by modulating Rho GTPase signaling, and recent evidence suggests that microtubule-mediated clathrin-dependent and -independent endocytosis regulates FA dynamics. In addition, FA-associated microtubules may provide a polarized microtubule track for localized secretion of matrix metalloproteases (MMPs). Thus, different aspects of the molecular mechanisms by which microtubules control FA turnover in migrating cells are beginning to emerge.


PLOS Pathogens | 2011

Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development.

Cherilyn A. Elwell; Shaobo Jiang; Jung Hwa Kim; Albert Lee; Torsten Wittmann; Kentaro Hanada; Paul Melançon; Joanne N. Engel

The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche.


Molecular Biology of the Cell | 2011

Dynamic actin remodeling during epithelial–mesenchymal transition depends on increased moesin expression

Jennifer Haynes; Jyoti Srivastava; Nikki Madson; Torsten Wittmann; Diane L. Barber

LifeAct-GFP, a fluorescent reporter for actin filaments, is used to uncover the dynamics of actin cytoskeleton remodeling in real time during TGF-β–induced EMT. Efficient actin filament remodeling and complete transition to a mesenchymal phenotype depend on an increase in expression of the ERM protein moesin.

Collaboration


Dive into the Torsten Wittmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hayley Pemble

University of California

View shared research outputs
Top Co-Authors

Avatar

Praveen Kumar

University of California

View shared research outputs
Top Co-Authors

Avatar

Jeffrey van Haren

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Karsenti

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Sarah Gierke

University of California

View shared research outputs
Top Co-Authors

Avatar

Isabelle Vernos

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Alexandre Matov

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge