Andreas Feuerhack
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Feuerhack.
Biocatalysis and Biotransformation | 2004
M. Alisch; Andreas Feuerhack; H. Müller; B. Mensak; J. Andreaus; Wolfgang Zimmermann
The modification of polyethylene terephthalate (PET) fibres by extracellular enzymes produced by actinomycetes was investigated. Cultivation of isolates in media containing PET yarn and suberin, a plant polyester composed of aliphatic and aromatic moieties, induced the production of p-nitrophenyl butyrate hydrolyzing enzymes. Incubation of enzyme preparations from the isolates M5, M9 and Thermomonospora fusca KW3b with PET yarn resulted in an increase in the absorbance of the reaction mixtures at 240 nm indicating the release of terephthalic acid or its esters catalyzed by the enzymes. The results of dyeing of enzyme-treated PET fabrics with a reactive dye (CI Reactive Red 2) indicated an increase in hydroxyl groups at the fibre surfaces as a result of the enzyme treatment.
Biocatalysis and Biotransformation | 2008
Andreas Feuerhack; M. Alisch-Mark; A. Kisner; S. H. Pezzin; Wolfgang Zimmermann; J. Andreaus
Knitted fabrics made from poly(ethylene terephthalate) fibres were treated with an enzyme preparation from Thermobifida fusca KW3b showing hydrolytic activity on p-nitrophenyl butyrate. The fabrics were also treated with NaOH and the results were compared. Both enzyme- and alkaline-treated fabrics showed an increase in reactive dye uptake, vertical wicking height and water absorption capacity of the fabrics indicating an increased surface hydrophilicity. However, X-ray photoelectron (XPS) and energy-dispersive spectroscopy (EDS) did not give conclusive results on the presence of newly introduced hydrophilic groups on the surface of the fibres. Analysis of the enzyme-treated poly(ethylene terephthalate) fibres by scanning electron microscopy (SEM) and by atomic force microscopy (AFM) indicated an increase in surface roughness of the fibres, which may contribute to the observed increased hydrophilicity of the PET fabrics. However, much longer treatment times (24 h) were required to obtain these effects with the enzymes compared to the chemical treatment (1 h).
Tribology Letters | 2015
Daniel Trauth; Andreas Feuerhack; P. Mattfeld; Fritz Klocke
Machine hammer peening (MHP) is an incremental forming process for surface structuring of technical workpieces or tools. Currently, MHP strongly attracts the attention of automotive and toolmaking industry. Recently performed research showed improved tribological characteristics in lubricated deep drawing in terms of a reduced friction coefficient due to a lubricant pocket effect and a reduced contact area. In order to design the MHP process to obtain an optimized load capacity of the fluid film, the velocity distribution has to be analyzed. Thus, an analytic approach for solving the Reynolds equation as a valid simplification of the Navier–Stokes equations for an elliptic geometry of a MHP structure is proposed in this work. The research assumes stationary hydrodynamic lubrication and is restricted to the longitudinal properties. Thereby, the influence of the structure geometry, the fluid film thickness, the sliding velocity and the dynamic viscosity on the fluid velocity distribution is researched by means of an analytic solution of the Reynolds equation. The derived formula is applied to contribute to the understanding in lubricated deep drawing with MHP structures, but is also transferable on further sliding contacts, e.g. bearing lubrication.
Key Engineering Materials | 2013
Andreas Feuerhack; C. Binotsch; Birgit Awiszus
In the SFB 692 HALS (High-strength aluminum based lightweight materials for safety components), subproject B-3, the production of an aluminum magnesium compound by a hydrostatic co-extrusion process was investigated. The quality of these semi-finished products, especially the stability and robustness of the interface between the aluminum (AlMgSi1) sleeve and magnesium (AZ31) core, was of particular interest. Previous papers have described the first process optimization steps as the improvement of the die design as well as the numerical methods for identification of important process parameters and the development of a quality model for the interface. This paper describes the formability of such semi-finished products with subsequent forging processes, especially die forging. Therefore, two different die forging strategies were investigated. In the first approach the strand-shaped work piece, with a circular cross-section, was formed along its longitudinal axis with die forging. In the second approach the same geometry was radially formed with die forging. Thereby, the compound was formed in longitudinal direction up to an analytical equivalent strain value of 1.61 and in radial direction up to 1.38. First results showed that the interface of the aluminum magnesium compound is very stable and ductile enough to be forged. Dye penetration tests were performed to prove the stability of the interface in a first step. Then, micro sections were made to investigate the interface metallographically. No cracks or damages were detected with both test methods in the interface of the forged aluminum magnesium compound. Furthermore, numerical simulations were performed to analyze the forging processes in detail. Therefore, a full 3D simulation model was set-up with Forge2011 and the calibration was performed with the press force as well as the geometry aspects. The correlations between experiments and simulations are very well. By means of the calibrated simulation detailed analyses of interface section are performed and the stability of the interface was investigated. This shows that the compound quality reached by the hydrostatic co-extrusion process is very suitable for subsequent forming steps as die forging. The investigations show the potential of such hybrid compounds and clarify their application, especially in the automotive sector.
Archive | 2015
Andreas Feuerhack; Daniel Trauth; Patrick Mattfeld; Fritz Klocke
Fine blanking is a well-established process for the production of near net shape components with high quality. The produced parts are characterized by a smooth sheared edge up to 100 %, excellent surface properties with good flatness and little burr as well as close tolerances for near net shape manufacturing. These process characteristics are suitable for the efficient production of spur gears with large batch size. In this work, the application of fine blanking was extended for the production of helical gears. Therefore, the fine blanking process was modified with an additional rotary movement of the dies to realize the manufacturing of helical gears. In this contribution the process idea, experimental and numerical work as well as the potential of fine blanked helical gears is presented.
36th IDDRG Conference - Materials Modelling and Testing for Sheet Metal Forming | 2017
Joachim Stanke; Daniel Trauth; Andreas Feuerhack; Fritz Klocke
Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.
Procedia Manufacturing | 2018
Joachim Stanke; Andreas Feuerhack; Daniel Trauth; Patrick Mattfeld; Fritz Klocke
Abstract A method for the development of a predictive model for the die roll height in fine blanking using artificial neural networks and support vector machines is presented. Since artificial neural networks require big amounts of training data and generation using experiments is very time consuming and cost intensive, a validated FE model is used instead. The required training data will be determined using learning curves. The optimal architecture and hyperparameter of the artificial neural network will be derived. Additionally, the die roll height is modelled using support vector machines and also conventional statistical regression models. Finally the accuracy of the methods is compared.
Key Engineering Materials | 2018
Fritz Klocke; Anton Shirobokov; Rafael Hild; Andreas Feuerhack; Daniel Trauth; Patrick Mattfeld
Deep rolling is an established mechanical surface treatment technology based on local plastic deformation of the surface layer. By these means, residual stresses, and strain hardening are induced into the surface layer as well as its surface structure is smoothed. Vibrorolling is a derivate technology of deep rolling characterized by sinusoidal rolling lanes. Due to process kinematics of vibrorolling the surface layer is incrementally deformed multiple times in different directions. As a result, a more intensive plastic deformation of the surface layer is achieved and potentially tribologically active surface structures are produced. To investigate and compare the effects of both surface treatment technologies on the tribological behavior of a processed component, a friction and wear analysis under lubricated conditions was conducted in this work. Friction and wear behavior of untreated, deep rolled, and vibrorolled specimens using a pin-on-cylinder tribometer was conducted. Hardness, roughness, and geometrical measurements of the wear traces were used to characterize the specimens. Additionally, qualitative assessments of the wear traces using scanning electron microscopy imaging were made. The measurements were performed before, during, and after the friction and wear analysis. Furthermore, contact forces between a tribometer pin and the workpiece were determined to analyze the development of contact shear stresses. Based on the conducted investigations, the effects of deep rolling and vibrorolling on the friction and wear behavior of the treated specimens are discussed and explanations for the observed phenomena are formulated in this work.
Journal of Composite Materials | 2018
Anton Shirobokov; Fritz Klocke; Oksana Baer; Andreas Feuerhack; Daniel Trauth; Martin Wahl
Lightweight structural components made of carbon fibre reinforced plastics are manufactured near-net-shape. However, in order to fulfil geometrical or functional requirements, carbon fibre reinforced plastic components have to be trimmed and pierced in a finish processing step. Shearing is a highly productive technology that is potentially suitable for cost-effective finishing of carbon fibre reinforced plastic components in high-volume series production. Shearing of carbon fibre reinforced plastic has not yet been sufficiently researched. Cutting force is an important characteristic of the shearing process. Up to now, there exists limited knowledge on numerical modelling of the cutting forces in carbon fibre reinforced plastic shearing. In order to address this, a finite element process model of carbon fibre reinforced plastic trimming was developed in this work. The process modelling included a formulation of continuum mechanical material model for a unidirectional ply as well as a development of a kinematic model of the trimming process. The developed finite element process model was validated by means of experimental data. The simulated and experimentally determined maximum specific cutting forces demonstrated a very good qualitative and quantitative agreement.
21st International ESAFORM Conference on Material Forming | 2018
Thomas Bergs; Matthias Nick; Andreas Feuerhack; Daniel Trauth; Fritz Klocke
Fuel efficiency requirements demand lightweight construction of vehicle body parts. The usage of advanced high strength steels permits a reduction of sheet thickness while still maintaining the overall strength required for crash safety. However, damage, internal defects (voids, inclusions, micro fractures), microstructural defects (varying grain size distribution, precipitates on grain boundaries, anisotropy) and surface defects (micro fractures, grooves) act as a concentration point for stress and consequently as an initiation point for failure both during deep drawing and in service. Considering damage evolution in the design of car body deep drawing processes allows for a further reduction in material usage and therefore body weight. Preliminary research has shown that a modification of load paths in forming processes can help mitigate the effects of damage on the material.This paper investigates the load paths in Nakajima tests of a DP800 dual phase steel to research damage in deep drawing processes. Investigation is done via a finite element model using experimentally validated material data for a DP800 dual phase steel. Numerical simulation allows for the investigation of load paths with respect to stress states, strain rates and temperature evolution, which cannot be easily observed in physical experiments. Stress triaxiality and the Lode parameter are used to describe the stress states. Their evolution during the Nakajima tests serves as an indicator for damage evolution. The large variety of sheet metal forming specific load paths in Nakajima tests allows a comprehensive evaluation of damage for deep drawing. The results of the numerical simulation conducted in this project and further physical experiments will later be used to calibrate a damage model for simulation of deep drawing processes.Fuel efficiency requirements demand lightweight construction of vehicle body parts. The usage of advanced high strength steels permits a reduction of sheet thickness while still maintaining the overall strength required for crash safety. However, damage, internal defects (voids, inclusions, micro fractures), microstructural defects (varying grain size distribution, precipitates on grain boundaries, anisotropy) and surface defects (micro fractures, grooves) act as a concentration point for stress and consequently as an initiation point for failure both during deep drawing and in service. Considering damage evolution in the design of car body deep drawing processes allows for a further reduction in material usage and therefore body weight. Preliminary research has shown that a modification of load paths in forming processes can help mitigate the effects of damage on the material.This paper investigates the load paths in Nakajima tests of a DP800 dual phase steel to research damage in deep drawing processes....