Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Funk is active.

Publication


Featured researches published by Andreas Funk.


Nature | 2011

Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean

Peter Brandt; Andreas Funk; Verena Hormann; Marcus Dengler; Richard John Greatbatch; John M. Toole

Climate variability in the tropical Atlantic Ocean is determined by large-scale ocean–atmosphere interactions, which particularly affect deep atmospheric convection over the ocean and surrounding continents. Apart from influences from the Pacific El Niño/Southern Oscillation and the North Atlantic Oscillation, the tropical Atlantic variability is thought to be dominated by two distinct ocean–atmosphere coupled modes of variability that are characterized by meridional and zonal sea-surface-temperature gradients and are mainly active on decadal and interannual timescales, respectively. Here we report evidence that the intrinsic ocean dynamics of the deep equatorial Atlantic can also affect sea surface temperature, wind and rainfall in the tropical Atlantic region and constitutes a 4.5-yr climate cycle. Specifically, vertically alternating deep zonal jets of short vertical wavelength with a period of about 4.5 yr and amplitudes of more than 10 cm s−1 are observed, in the deep Atlantic, to propagate their energy upwards, towards the surface. They are linked, at the sea surface, to equatorial zonal current anomalies and eastern Atlantic temperature anomalies that have amplitudes of about 6 cm s−1 and 0.4 °C, respectively, and are associated with distinct wind and rainfall patterns. Although deep jets are also observed in the Pacific and Indian oceans, only the Atlantic deep jets seem to oscillate on interannual timescales. Our knowledge of the persistence and regularity of these jets is limited by the availability of high-quality data. Despite this caveat, the oscillatory behaviour can still be used to improve predictions of sea surface temperature in the tropical Atlantic. Deep-jet generation and upward energy transmission through the Equatorial Undercurrent warrant further theoretical study.


Journal of Geophysical Research | 2004

Seasonal to interannual variability of the eddy field in the Labrador Sea from satellite altimetry

Peter Brandt; Friedrich Schott; Andreas Funk; Carlos Sena Martins

Sea level anomalies measured by the altimeters aboard the TOPEX/Poseidon and ERS satellites for the periods 1993–2001 and 1997–2001, respectively, are used to investigate the eddy field in the subpolar North Atlantic and in the Labrador Sea. A quadratic correction of the obtained eddy kinetic energy (EKE) with respect to significant wave height is applied that led to an increased correlation between moored and altimetric EKE in the central Labrador Sea. The mean EKE field shows higher levels associated with the main currents and a strong seasonality in the Labrador Sea. The annual cycle of the EKE shows a propagation of West Greenland Current (WGC) EKE into the central Labrador Sea with a mean southward propagation speed of about 3 cm s−1, while the EKE maximum in the Labrador Current is well separated from the interior by local EKE minima. The interannual variability of the EKE in the Labrador Sea shows distinct regional differences. In the WGC region, strong early winter maxima are found during 1993 and 1997–1999. In the central Labrador Sea, maxima are found during March/April 1993–1995 and 1997. Variations in the annual cycle of the WGC EKE are observed: While there is a weak annual cycle in the WGC region during 1994–1996 with more continuous EKE generation, during 1997–2000, there is a strong seasonal cycle with maximum EKE during January and particularly low EKE during summer. The propagation of WGC EKE into the central Labrador Sea is enhanced during 1997–2000, leading to a long persistence of EKE in the central Labrador Sea. During 1993–1995 and 1997 the central Labrador Sea EKE almost instantaneously increased during March/April, followed, in the earlier years, by a relatively fast destruction of the winterly generated EKE.


Journal of Geophysical Research | 2012

Ventilation of the equatorial Atlantic by the equatorial deep jets

Peter Brandt; Richard J. Greatbatch; Martin Claus; Sven-Helge Didwischus; Verena Hormann; Andreas Funk; Johannes Hahn; Gerd Krahmann; Jürgen Fischer; Arne Körtzinger

Equatorial deep jets (EDJs) are a prominent flow feature of the equatorial Atlantic below the Equatorial Undercurrent down to about 3000 m. Here we analyze long-term moored velocity and oxygen observations, as well as shipboard hydrographic and current sections acquired along 23{degree sign}W and covering the depth range of the oxygen minimum zones of the eastern tropical North and South Atlantic. The moored zonal velocity data show high-baroclinic mode EDJ oscillations at a period of about 4.5 years. Equatorial oxygen observations which do not resolve or cover a full 4.5-yr EDJ cycle nevertheless reveal large variability, with oxygen concentrations locally spanning a range of more than 60 μmol kg−1. We study the effect of EDJs on the equatorial oxygen concentration by forcing an advection-diffusion model with the velocity field of the gravest equatorial basin mode corresponding to the observed EDJ cycle. The advection-diffusion model includes an oxygen source at the western boundary and oxygen consumption elsewhere. The model produces a 4.5-yr cycle of the oxygen concentration and a temporal phase difference between oxygen concentration and eastward velocity that is less than quadrature, implying a net eastward oxygen flux. The comparison of available observations and basin-mode simulations indicates that a substantial part of the observed oxygen variability at the equator can be explained by EDJ oscillations. The respective role of mean advection, EDJs, and other possible processes in shaping the mean oxygen distribution of the equatorial Atlantic at intermediate depth is discussed. Key Points: - Equatorial Deep Jets strongly affect oxygen distribution/variability - Mean oxygen ditribution in the equatorial Atlantic at intermediate depth - Gravest equatorial basin mode forces an advection-diffusion model


Journal of Physical Oceanography | 2007

Ventilation and Transformation of Labrador Sea Water and Its Rapid Export in the Deep Labrador Current

Peter Brandt; Andreas Funk; Lars Czeschel; Carsten Eden; Claus W. Böning

A model of the subpolar North Atlantic Ocean is used to study different aspects of ventilation and water mass transformation during a year with moderate convection intensity in the Labrador Sea. The model realistically describes the salient features of the observed hydrographic structure and current system, including boundary currents and recirculations. Ventilation and transformation rates are defined and compared. The transformation rate of Labrador Sea Water (LSW), defined in analogy to several observational studies, is 6.3 Sv (Sv ≡ 106 m3 s−1) in the model. Using an idealized ventilation tracer, mimicking analyses based on chlorofluorocarbon inventories, an LSW ventilation rate of 10 Sv is found. Differences between both rates are particularly significant for those water masses that are partially transformed into denser water masses during winter. The main export route of the ventilated LSW is the deep Labrador Current (LC). Backward calculation of particle trajectories demonstrates that about one-half of the LSW leaving the Labrador Sea within the deep LC originates in the mixed layer during that same year. Near the offshore flank of the deep LC at about 55°W, the transformation of LSW begins in January and is at a maximum in February/March. While the export of transformed LSW out of the central Labrador Sea continues for several months, LSW generated near the boundary current is exported more rapidly, with maximum transport rates during March/April within the deep LC.


Climate Dynamics | 2014

The Equatorial Undercurrent in the Central Atlantic and its relation to tropical Atlantic variability

Peter Brandt; Andreas Funk; Alexis Tantet; William E. Johns; Jürgen Fischer

Seasonal to interannual variations of the Equatorial Undercurrent (EUC) in the central Atlantic at 23°W are studied using shipboard observation taken during the period 1999–2011 as well as moored velocity time series covering the period May 2005–June 2011. The seasonal variations are dominated by an annual harmonic of the EUC transport and the EUC core depth (both at maximum during September), and a semiannual harmonic of the EUC core velocity (maximum during April and September). Substantial interannual variability during the period of moored observation included anomalous cold/warm equatorial Atlantic cold tongue events during 2005/2008. The easterly winds in the western equatorial Atlantic during boreal spring that represent the preconditioning of cold/warm events were strong/weak during 2005/2008 and associated with strong/weak boreal summer EUC transport. The anomalous year 2009 was instead associated with weak preconditioning and smallest EUC transport on record from January to July, but during August coldest SST anomalies in the eastern equatorial Atlantic were observed. The interannual variations of the EUC are discussed with respect to recently described variability of the tropical Atlantic Ocean.


Journal of Geophysical Research | 2009

Eddy diffusivities estimated from observations in the Labrador Sea

Andreas Funk; Peter Brandt; Tim Fischer

Eddy diffusivities in the Labrador Sea (LS) are estimated from deep eddy resolving float trajectories, moored current meter records, and satellite altimetry. A mean residence time of 248 days in the central LS is observed with several floats staying for more than 2 years. By applying a simple random walk diffusion model, the observed distribution of float residence times in the central LS could be explained by a mean eddy diffusivity of about 300 m2 s−1. Estimates from float trajectories themselves and from moored current meter records yield significantly higher eddy diffusivities in the central LS of 950–1100 m2 s−1. This discrepancy can be explained by an inhomogeneity of the eddy diffusivity at middepth with high/low values in the central LS/region between central LS and deep Labrador Current, which could be conjectured from the mean altimetric eddy kinetic energy (EKE) distribution. The different diffusivities explain both (1) a fast lateral homogenization of water masses in the central LS and (2) a weak exchange between central LS and boundary current. The mean Lagrangian length scale of 11.5 ± 0.7 km as estimated from deep float trajectories is only slightly larger than the mean Rossby radius of deformation (8.8 km). Largest eddy diffusivities within the central LS are associated with strong eddy drifts, rather than with large swirl velocities and associated large EKE. between central LS and deep Labrador Current, which could be conjectured from the mean altimetric eddy kinetic energy (EKE) distribution. The different diffusivities explain both (1) a fast lateral homogenization of water masses in the central LS and (2) a weak exchange between central LS and boundary current. The mean Lagrangian length scale of 11.5 ± 0.7 km as estimated from deep float trajectories is only slightly larger than the mean Rossby radius of deformation (8.8 km). Largest eddy diffusivities within the central LS are associated with strong eddy drifts, rather than with large swirl velocities and associated large EKE.


Meteor-Berichte, M80/1 . Leitstelle Deutsche Forschungsschiffe, Inst. f. Meereskunde, Hamburg, Germany, 49 pp. | 2011

Circulation and Oxygen Distribution in the Tropical AtlanticCruise No. 80, Leg 1; October 26 to November 23, 2009Mindelo (Cape Verde) to Mindelo (Cape Verde)

Peter Brandt; D. Brownell; Marcus Dengler; Sven-Helge Didwischus; Sandra Fehsenfeld; Sebastian Fessler; Jürgen Fischer; Andreas Funk; Tobias Großkopf; Johannes Hahn; H. Halm; Verena Hormann; Uwe Koy; Gerd Krahmann; A. Krupke; V. Melo; Mario Müller; Gerd Niehus; Uwe Papenburg; Andreas Pinck; Anke Schneider; Tobias Steinhoff; Tim Stöven; T. Truscheit; N. Viera; H. von Neuhoff; Thibaut Wagener; Kathrin Wuttig; Rainer J. Zantopp

METEOR cruise 80/1 was a contribution to the SFB 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean”. Shipboard, glider and moored observations are used to study the temporal and spatial variability of physical and biogeochemical parameters within the oxygen minimum zone (OMZ) of the tropical North Atlantic. As part of the BMBF “Nordatlantik” project, it further focuses on the equatorial current system including the Equatorial Undercurrent (EUC) and intermediate currents below. During the cruise, hydrographic station observations were performed using a CTD/O2 rosette, including water sampling for salinity, oxygen, nutrients and other biogeochemical tracers. Underway current measurements were successfully carried out with the 75 kHz ADCP borrowed from R/V POSEIDON during the first part of the cruise, and R/V METEOR’s 38 kHz ADCP during the second part. During M80/1, an intensive mooring program was carried out with 8 mooring recoveries and 8 mooring deployments. Right at the beginning of the cruise, a multidisciplinary mooring near the Cape Verde Islands was recovered and redeployed. Within the framework of SFB 754, two moorings with CTD/O2 profilers were recovered and redeployed with other instrumentation in the center and at the southern rim of the OMZ of the tropical North Atlantic. The equatorial mooring array as part of BMBF “North Atlantic” project consists of 5 current meter moorings along 23°W between 2°S and 2°N. It is aimed at quantifying the variability of the thermocline water supply toward the equatorial cold tongue which develops east of 10°W during boreal summer. Several glider missions were performed during the cruise. One glider was recovered that was deployed two months earlier. Another glider was deployed for two short term missions, near the equator for about 8 days and near 8°N for one day. This glider was equipped with a new microstructure probe in addition to standard sensors, i.e. CTD/O2, chlorophyll and turbidity.


international geoscience and remote sensing symposium | 2006

Seasonal Changes in Microwave Sea Surface Temperature in the Labrador Sea and Its Relationship to Seasonal Changes in Ocean Surface Currents

William J. Emery; Peter Brandt; Andreas Funk; Jessica Fandre; Claus W. Böning

As one of the few places in the ocean where winter cooling/mixing creates conditions where water from the surface can penetrate into the deep ocean the Labrador Sea is an area of interest to people studying climate change in the ocean. Persistent cloud cover over this area makes it impossible to use infrared satellite imagery to relate space/time changes in sea surface temperature (SST) to changes in surface currents and air-sea interaction. Using passive microwave SSTs from the Advanced Microwave Scanning Radiometer (AMSR-E) we plot space/time changes in SST in the Labrador Sea and relate these changes to both simultaneous in situ measurements of temperature and numerical model SSTs. A direct comparison between the microwave SSTs, infrared SSTs and in situ temperatures measured from profiling floats reveals that the microwave SSTs are a good representation of space/time changes in infrared SST and in ocean temperatures down to 10 m below the sea surface. Comparisons between the microwave SSTs and time series of temperatures at depths below 50 m reveal that winter/spring surface cooling makes the SST similar to temperatures at these deeper depths in the convection region of the central Labrador Sea.


Geophysical Research Letters | 2006

Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning

Claus W. Böning; Markus Scheinert; Joachim Dengg; Arne Biastoch; Andreas Funk


Atmospheric Science Letters | 2011

Equatorial upper-ocean dynamics and their interaction with the West African monsoon

Peter Brandt; Guy Caniaux; B. Bourlès; Alban Lazar; Marcus Dengler; Andreas Funk; Verena Hormann; Hervé Giordani; Frédéric Marin

Collaboration


Dive into the Andreas Funk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Verena Hormann

University of California

View shared research outputs
Top Co-Authors

Avatar

Jürgen Fischer

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jürgen Fischer

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Toole

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge