Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas G. J. Tredoux is active.

Publication


Featured researches published by Andreas G. J. Tredoux.


Journal of Chromatography A | 2001

Stir bar sorptive extraction applied to the determination of dicarboximide fungicides in wine

Pat Sandra; Bart Tienpont; Joeri Vercammen; Andreas G. J. Tredoux; Tom Sandra; Frank David

The dicarboximide fungicides vinclozolin, iprodione and procymidone were analyzed in white wines using stir bar sorptive extraction (SBSE) in combination with thermal desorption-capillary GC-MS analysis (TD-cGC-MS). The method was optimized using spiked water samples in a concentration range between 0.5 and 100 microg/l. Iprodione was measured as its degradation product 3,5-dichlorophenyl hydantoin. Limits of quantification in the full scan MS mode are 0.5 microg/l for vinclozolin and procymidone and 5 microg/l for iprodione. In the ion monitoring mode, concentrations 100 times lower can be dosed. Because of wine matrix effects on the recoveries, quantification of the target fungicides in wine had to be carried out by standard addition. For the thermolabile iprodione, the accuracy of SBSE-TD-cGC-MS was verified using SBSE followed by liquid desorption and analysis by liquid chromatography-atmospheric pressure chemical ionization mass spectroscopy. Procymidone and iprodione were detected in wines in concentrations up to 65 microg/l while the highest concentration of vinclozolin detected was smaller than 3 microg/l.


Journal of Agricultural and Food Chemistry | 2009

Characterization of selected South African young cultivar wines using FTMIR Spectroscopy, Gas chromatography, and multivariate data analysis

Leanie Louw; Karolien Roux; Andreas G. J. Tredoux; Oliver Tomic; Tormod Næs; Hélène H. Nieuwoudt; Pierre van Rensburg

The powerful combination of analytical chemistry and chemometrics and its application to wine analysis provide a way to gain knowledge and insight into the inherent chemical composition of wine and to objectively distinguish between wines. Extensive research programs are focused on the chemical characterization of wine to establish industry benchmarks and authentication systems. The aim of this study was to investigate the volatile composition and mid-infrared spectroscopic profiles of South African young cultivar wines with chemometrics to identify compositional trends and to distinguish between the different cultivars. Data were generated by gas chromatography and FTMIR spectroscopy and investigated by using analysis of variance (ANOVA), principal component analysis (PCA), and linear discriminant analysis (LDA). Significant differences were found in the volatile composition of the cultivar wines, with marked similarities in the composition of Pinotage wines and white wines, specifically for 2-phenylethanol, butyric acid, ethyl acetate, isoamyl acetate, isoamyl alcohol, and isobutyric acid. Of the 26 compounds that were analyzed, 14 had odor activity values of >1. The volatile composition and FTMIR spectra both contributed to the differentiation between the cultivar wines. The best discrimination model between the white wines was based on FTMIR spectra (98.3% correct classification), whereas a combination of spectra and volatile compounds (86.8% correct classification) was best to discriminate between the red wine cultivars.


Journal of Agricultural and Food Chemistry | 2008

Stir bar sorptive extraction combined with GC-MS analysis and chemometric methods for the classification of South African wines according to the volatile composition

Andreas G. J. Tredoux; André de Villiers; Pavel Májek; Frederic Lynen; Andrew M. Crouch; Pat Sandra

A simple method for the analysis of major wine volatiles and semivolatiles by stir bar sorptive extraction in combination with thermal desorption and gas chromatography-mass spectrometry (SBSE-TD-GC-MS) was developed. Significant experimental parameters such as extraction time, temperature, salt addition, pH, and thermal desorption parameters were optimized to provide a sensitive and robust analytical method. The method provided good repeatability (%RSD < 10%) for 38 major wine volatile compounds, including alcohols, acids, esters, phenols, aldehydes, ketones, and lactones. Quantitative data for 62 South African red and white wines were used to study the suitability of major volatile data for the differentiation of wine samples according to grape variety or cultivar. Principal component analysis (PCA) and cluster analysis (CA) showed that most of the variation in volatile composition between wine samples could be ascribed to differences in wine age, wood contact, and fermentation practices. Despite the contribution of these factors, discriminant analysis (DA) was successfully applied to the classification of red and white wine samples according to cultivar.


Analytica Chimica Acta | 2012

Analytical techniques for wine analysis: an African perspective; a review.

André de Villiers; Phillipus Alberts; Andreas G. J. Tredoux; Hélène H. Nieuwoudt

Analytical chemistry is playing an ever-increasingly important role in the global wine industry. Chemical analysis of wine is essential in ensuring product safety and conformity to regulatory laws governing the international market, as well as understanding the fundamental aspects of grape and wine production to improve manufacturing processes. Within this field, advanced instrumental analysis methods have been exploited more extensively in recent years. Important advances in instrumental analytical techniques have also found application in the wine industry. This review aims to highlight the most important developments in the field of instrumental wine and grape analysis in the African context. The focus of this overview is specifically on the application of advanced instrumental techniques, including spectroscopic and chromatographic methods. Recent developments in wine and grape analysis and their application in the African context are highlighted, and future trends are discussed in terms of their potential contribution to the industry.


Hrc-journal of High Resolution Chromatography | 2000

The determination of benzoic acid in lemon flavored beverages by stir Bar Sorptive extraction-CGC-MS

Andreas G. J. Tredoux; H Lauer; Theo Heideman; Pat Sandra

Stir Bar Sorptive Extraction (SBSE), a recently introduced solventless extraction technique, was applied for the enrichment of benzoic acid in lemon flavored beverages. The stir bar is covered with 50 mg polydimethylsiloxane (PDMS) and the extraction mechanism is similar to that of solid phase micro extraction (SPME) but the enrichment factor is ca. 100 times higher. SBSE is followed by thermal desorption (TD)-capillary gas chromatography (CGC)-mass spectroscopy (MS). Calibration graphs for benzoic acid were linear from 1 to 1000 ppm for water and diluted soft drinks and the repeatability (n = 6) was less than 5% RSD.


Journal of Chromatography A | 2014

Comprehensive two-dimensional liquid chromatographic analysis of anthocyanins☆

Chandré M. Willemse; Maria A. Stander; Andreas G. J. Tredoux; André de Villiers

Anthocyanins are naturally occurring plant pigments whose accurate analysis is hampered by their complexity and unique chromatographic behaviour associated with on-column conversion reactions. This paper reports the evaluation of off-line comprehensive two-dimensional liquid chromatography (LC×LC) for the analysis of anthocyanins. Hydrophilic interaction chromatography (HILIC) was used in the first dimension in combination with reversed phase liquid chromatography (RP-LC) in the second dimension. For the selective detection of anthocyanins, diode array detection was used, while high resolution quadrupole-time-of-flight mass spectrometry (Q-TOF) was used for compound identification. As application, the HILIC×RP-LC separation of diverse anthocyanins in blueberries, red radish, black beans, red grape skins and red cabbage is demonstrated. Off-line HILIC×RP-LC revealed information which could not be obtained by one-dimensional HPLC methods, while the structured elution order for the anthocyanins simplifies compound identification and facilitates the comparison of anthocyanin content of natural products by means of contour plots.


Journal of Industrial Microbiology & Biotechnology | 2012

Comparative metabolic profiling to investigate the contribution of O. oeni MLF starter cultures to red wine composition

Sulette Malherbe; Andreas G. J. Tredoux; Hélène H. Nieuwoudt; Maret du Toit

In this research work we investigated changes in volatile aroma composition associated with four commercial Oenococcus oeni malolactic fermentation (MLF) starter cultures in South African Shiraz and Pinotage red wines. A control wine in which MLF was suppressed was included. The MLF progress was monitored by use of infrared spectroscopy. Gas chromatographic analysis and capillary electrophoresis were used to evaluate the volatile aroma composition and organic acid profiles, respectively. Significant strain-specific variations were observed in the degradation of citric acid and production of lactic acid during MLF. Subsequently, compounds directly and indirectly resulting from citric acid metabolism, namely diacetyl, acetic acid, acetoin, and ethyl lactate, were also affected depending on the bacterial strain used for MLF. Bacterial metabolic activity increased concentrations of the higher alcohols, fatty acids, and total esters, with a larger increase in ethyl esters than in acetate esters. Ethyl lactate, diethyl succinate, ethyl octanoate, ethyl 2-methylpropanoate, and ethyl propionate concentrations were increased by MLF. In contrast, levels of hexyl acetate, isoamyl acetate, 2-phenylethyl acetate, and ethyl acetate were reduced or remained unchanged, depending on the strain and cultivar evaluated. Formation of ethyl butyrate, ethyl propionate, ethyl 2-methylbutryate, and ethyl isovalerate was related to specific bacterial strains used, indicating possible differences in esterase activity. A strain-specific tendency to reduce total aldehyde concentrations was found at the completion of MLF, although further investigation is needed in this regard. This study provided insight into metabolism in O. oeni starter cultures during MLF in red wine.


Analytical Chemistry | 2015

Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography (HILIC) × Reversed-Phase Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (RP-LC-UV-MS) Analysis of Anthocyanins and Derived Pigments in Red Wine

Chandré M. Willemse; Maria A. Stander; Jochen Vestner; Andreas G. J. Tredoux; André de Villiers

Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.


South African Journal of Enology and Viticulture | 2016

Fermentation-derived Aroma Compounds in Varietal Young Wines from South Africa

Leanie Louw; Andreas G. J. Tredoux; P. van Rensburg; Martin Kidd; Tormod Næs; Hélène H. Nieuwoudt

The volatile composition of 925 single cultivar young Sauvignon blanc, Chardonnay, Pinotage, Merlot, Shiraz and Cabernet Sauvignon wines of vintages 2005 to 2007, was determined using gas chromatography – flame ionisation detection. Compositional data were compared to published data on young wines from South Africa and other countries. South African young wines analysed in this study had a largely similar volatile composition to that reported in the literature. Significant between-vintage and between-cultivar differences were observed in the volatile composition of the wines investigated in this study. The concentration ranges of four compounds in red wines, hexanol, propanol, diethyl succinate and ethyl lactate, and four compounds in white wines, 2-phenylethanol, hexanoic acid, isoamyl acetate and propanol, were not influenced by vintage effects. This finding was interpreted as the first indication that typical concentration ranges for some aroma compounds can be established for South African young cultivar wines. A trend was observed in the white wines that the alcohols and their respective acetate esters, as well as fatty acids and their ethyl esters, were responsible for the vintage-related effects. Differences in volatile composition between Chardonnay and Sauvignon blanc wines could also largely be explained on the same basis. Classification models were established to discriminate between individual red wine cultivars and between the two white wine cultivars and correct classification rates of respectively, 79 % and 85 % were achieved.


Journal of Agricultural and Food Chemistry | 2011

Investigation of the volatile composition of pinotage wines fermented with different malolactic starter cultures using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOF-MS).

Jochen Vestner; Sulette Malherbe; Maret du Toit; Hélène H. Nieuwoudt; Ahmed Mostafa; Tadeusz Górecki; Andreas G. J. Tredoux; André de Villiers

Headspace solid phase microextraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (HS-SPME-GC × GC-TOF-MS) was used for the detailed investigation of the impact of malolactic fermentation (MLF) using three commercial Oenococcus oeni strains on the volatile composition of Vitis vinifera cv. Pinotage wines. GC × GC allowed the identification of 115 volatile compounds, including both major constituents and trace-level compounds, in a single analysis. A number of compounds differing in mean concentration levels between the control wines and those fermented with different starter cultures were shown for the first time to be influenced by MLF and/or the bacterial strain. Principal component analysis (PCA) provided excellent separation between the wines fermented with different MLF starter cultures and the control wine. Significantly different levels for some volatile compounds in wines fermented with one of the LAB starter cultures could be indicative of metabolic differences of this strain.

Collaboration


Dive into the Andreas G. J. Tredoux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge