Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hélène H. Nieuwoudt is active.

Publication


Featured researches published by Hélène H. Nieuwoudt.


Food and Bioprocess Technology | 2012

NIR Spectroscopy Applications for Internal and External Quality Analysis of Citrus Fruit—A Review

Lembe Samukelo Magwaza; Umezuruike Linus Opara; Hélène H. Nieuwoudt; Paul J.R. Cronje; Wouter Saeys; Bart Nicolai

The global citrus industry is continually confronted by new technological challenges to meet the ever-increasing consumer awareness and demand for quality-assured fruit. To face these challenges, recent trend in agribusiness is declining reliance on subjective assessment of quality and increasing adoption of objective, quantitative and non-destructive techniques of quality assessment. Non-destructive instrument-based methods are preferred to destructive techniques because they allow the measurement and analysis of individual fruit, reduce waste and permit repeated measures on the same item over time. A wide range of objective instruments for sensing and measuring the quality attributes of fresh produce have been reported. Among non-destructive quality assessment techniques, near-infrared (NIR) spectroscopy (NIRS) is arguably the most advanced with regard to instrumentation, applications, accessories and chemometric software packages. This paper reviews research progress on NIRS applications in internal and external quality measurement of citrus fruit, including the selection of NIR characteristics for spectra capture, analysis and interpretation. A brief overview on the fundamental theory, history, chemometrics of NIRS including spectral pre-processing methods, model calibration, validation and robustness is included. Finally, future prospects for NIRS-based imaging systems such as multispectral and hyperspectral imaging as well as optical coherence tomography as potential non-destructive techniques for citrus quality assessment are explored.


Analytica Chimica Acta | 2012

Analytical techniques for wine analysis: an African perspective; a review.

André de Villiers; Phillipus Alberts; Andreas G. J. Tredoux; Hélène H. Nieuwoudt

Analytical chemistry is playing an ever-increasingly important role in the global wine industry. Chemical analysis of wine is essential in ensuring product safety and conformity to regulatory laws governing the international market, as well as understanding the fundamental aspects of grape and wine production to improve manufacturing processes. Within this field, advanced instrumental analysis methods have been exploited more extensively in recent years. Important advances in instrumental analytical techniques have also found application in the wine industry. This review aims to highlight the most important developments in the field of instrumental wine and grape analysis in the African context. The focus of this overview is specifically on the application of advanced instrumental techniques, including spectroscopic and chromatographic methods. Recent developments in wine and grape analysis and their application in the African context are highlighted, and future trends are discussed in terms of their potential contribution to the industry.


Analytical and Bioanalytical Chemistry | 2010

Instrumental measurement of bitter taste in red wine using an electronic tongue

Alisa Rudnitskaya; Hélène H. Nieuwoudt; Nina Muller; Andrey Legin; Maret du Toit; Florian F. Bauer

An electronic tongue (ET) based on potentiometric chemical sensors was assessed as a rapid tool for the quantification of bitterness in red wines. A set of 39 single cultivar Pinotage wines comprising 13 samples with medium to high bitterness was obtained from the producers in West Cape, South Africa. Samples were analysed with respect to a set of routine wine parameters and major phenolic compounds using Fourier transform infrared-multiple internal reflection spectroscopy (WineScan) and high-performance liquid chromatography, respectively. A trained sensory panel assessed the bitterness intensity of 15 wines, 13 of which had a bitter taste of medium to high intensity. Thirty-one wine samples including seven bitter-tasting ones were measured by the ET. Influence of the chemical composition of wine on the occurrence of the bitter taste was evaluated using one-way analysis of variance. It was found that bitter-tasting wines had higher concentrations of phenolic compounds (catechin, epicatechin, gallic and caffeic acids and quercetin) than non-bitter wines. Sensitivity of the sensors of the array to the phenolic compounds related to the bitterness was studied at different pH levels. Sensors displayed sensitivity to all studied compounds at pH 7, but only to quercetin at pH 3.5. Based on these findings, the pH of wine was adjusted to 7 prior to measurements. Calibration models for classification of wine samples according to the presence of the bitter taste and quantification of the bitterness intensity were calculated by partial least squares-discriminant analysis (PLS-DA) regression. Statistical significance of the classification results was confirmed by the permutation test. Both ET and chemical analysis data could discriminate between bitter and control wines with the correct classification rates of 94% and 91%, respectively. Prediction of the bitterness intensity with good accuracy (root mean square error of 2 and mean relative error of 6% in validation) was possible only using ET data.


Journal of Industrial Microbiology & Biotechnology | 2012

Comparative metabolic profiling to investigate the contribution of O. oeni MLF starter cultures to red wine composition

Sulette Malherbe; Andreas G. J. Tredoux; Hélène H. Nieuwoudt; Maret du Toit

In this research work we investigated changes in volatile aroma composition associated with four commercial Oenococcus oeni malolactic fermentation (MLF) starter cultures in South African Shiraz and Pinotage red wines. A control wine in which MLF was suppressed was included. The MLF progress was monitored by use of infrared spectroscopy. Gas chromatographic analysis and capillary electrophoresis were used to evaluate the volatile aroma composition and organic acid profiles, respectively. Significant strain-specific variations were observed in the degradation of citric acid and production of lactic acid during MLF. Subsequently, compounds directly and indirectly resulting from citric acid metabolism, namely diacetyl, acetic acid, acetoin, and ethyl lactate, were also affected depending on the bacterial strain used for MLF. Bacterial metabolic activity increased concentrations of the higher alcohols, fatty acids, and total esters, with a larger increase in ethyl esters than in acetate esters. Ethyl lactate, diethyl succinate, ethyl octanoate, ethyl 2-methylpropanoate, and ethyl propionate concentrations were increased by MLF. In contrast, levels of hexyl acetate, isoamyl acetate, 2-phenylethyl acetate, and ethyl acetate were reduced or remained unchanged, depending on the strain and cultivar evaluated. Formation of ethyl butyrate, ethyl propionate, ethyl 2-methylbutryate, and ethyl isovalerate was related to specific bacterial strains used, indicating possible differences in esterase activity. A strain-specific tendency to reduce total aldehyde concentrations was found at the completion of MLF, although further investigation is needed in this regard. This study provided insight into metabolism in O. oeni starter cultures during MLF in red wine.


South African Journal of Enology and Viticulture | 2016

Fermentation-derived Aroma Compounds in Varietal Young Wines from South Africa

Leanie Louw; Andreas G. J. Tredoux; P. van Rensburg; Martin Kidd; Tormod Næs; Hélène H. Nieuwoudt

The volatile composition of 925 single cultivar young Sauvignon blanc, Chardonnay, Pinotage, Merlot, Shiraz and Cabernet Sauvignon wines of vintages 2005 to 2007, was determined using gas chromatography – flame ionisation detection. Compositional data were compared to published data on young wines from South Africa and other countries. South African young wines analysed in this study had a largely similar volatile composition to that reported in the literature. Significant between-vintage and between-cultivar differences were observed in the volatile composition of the wines investigated in this study. The concentration ranges of four compounds in red wines, hexanol, propanol, diethyl succinate and ethyl lactate, and four compounds in white wines, 2-phenylethanol, hexanoic acid, isoamyl acetate and propanol, were not influenced by vintage effects. This finding was interpreted as the first indication that typical concentration ranges for some aroma compounds can be established for South African young cultivar wines. A trend was observed in the white wines that the alcohols and their respective acetate esters, as well as fatty acids and their ethyl esters, were responsible for the vintage-related effects. Differences in volatile composition between Chardonnay and Sauvignon blanc wines could also largely be explained on the same basis. Classification models were established to discriminate between individual red wine cultivars and between the two white wine cultivars and correct classification rates of respectively, 79 % and 85 % were achieved.


Journal of Agricultural and Food Chemistry | 2011

Investigation of the volatile composition of pinotage wines fermented with different malolactic starter cultures using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOF-MS).

Jochen Vestner; Sulette Malherbe; Maret du Toit; Hélène H. Nieuwoudt; Ahmed Mostafa; Tadeusz Górecki; Andreas G. J. Tredoux; André de Villiers

Headspace solid phase microextraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (HS-SPME-GC × GC-TOF-MS) was used for the detailed investigation of the impact of malolactic fermentation (MLF) using three commercial Oenococcus oeni strains on the volatile composition of Vitis vinifera cv. Pinotage wines. GC × GC allowed the identification of 115 volatile compounds, including both major constituents and trace-level compounds, in a single analysis. A number of compounds differing in mean concentration levels between the control wines and those fermented with different starter cultures were shown for the first time to be influenced by MLF and/or the bacterial strain. Principal component analysis (PCA) provided excellent separation between the wines fermented with different MLF starter cultures and the control wine. Significantly different levels for some volatile compounds in wines fermented with one of the LAB starter cultures could be indicative of metabolic differences of this strain.


South African Journal of Enology and Viticulture | 2016

Optimisation of the quantification of total soluble solids, ph and titratable acidity in South African grape must using Fourier transform mid-infrared spectroscopy

M. Swanepoel; M. Du Toit; Hélène H. Nieuwoudt

Calibration models for Fourier transform mid-infrared (FT-MIR) spectroscopy were developed for the simultaneous quantification of total soluble solids (TSS, measured as °Brix), pH and titratable acidity (TA, expressed as g/L tartaric acid) in South African (SA) grape must. An exploratory data analysis of the FT-MIR spectra of 1170 grape must samples (647 for °Brix, 252 for pH and 271 for TA) was done by principal component analysis, and partial least squares regression was used for the computation of the regression models. The prediction errors for TSS (0.34 °Brix), pH (0.04 units) and TA (0.51 g/L) provided analytical data of satisfactory accuracy. The evaluation of readyto- use global calibrations to quantify these three parameters in SA samples presented standard error of prediction (SEP) values of 0.46°Brix, 0.10 pH units and 3.13 g/L for TA. After slope and intercept adjustments of the original global calibration algorithms, the SEP values were reduced to 0.38 °Brix, 0.05 pH units and 0.49 g/L for TA. These results show the necessity for optimisation of the global FT-MIR WineScan calibrations to provide a better fit to samples of South African origin. The results demonstrate that FT-MIR spectroscopy is a useful technique for the rapid quantification of major grape must parameters and for quality control purposes in an industrial cellar.


Food Chemistry | 2016

A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis

Davirai M. Musingarabwi; Hélène H. Nieuwoudt; Philip R. Young; Hans A. Eyéghé-Bickong; Melané A. Vivier

Fourier transform (FT) near-infrared (NIR) and attenuated total reflection (ATR) FT mid-infrared (MIR) spectroscopy were used to qualitatively and quantitatively analyse Vitis vinifera L. cv Sauvignon blanc grape berries. FT-NIR and ATR FT-MIR spectroscopy, coupled with spectral preprocessing and multivariate data analysis (MVDA), provided reliable methods to qualitatively assess berry samples at five distinct developmental stages: green, pre-véraison, véraison, post-véraison and ripe (harvest), without any prior metabolite extraction. Compared to NIR spectra, MIR spectra provided more reliable discrimination between the berry samples from the different developmental stages. Interestingly, ATR FT-MIR spectra from fresh homogenized berry samples proved more discriminatory than spectra from frozen homogenized berry samples. Different developmental stages were discriminated by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In order to generate partial least squares (PLS) models from the MIR/NIR spectral datasets; the major sugars (glucose and fructose) and organic acids (malic acid, succinic acid and tartaric acid) were separated and quantified by high performance liquid chromatography (HPLC) and the data used as a reference dataset. PLS regression was used to develop calibration models to predict the concentration of the major sugars and organic acids in the berry samples from different developmental stages. Our data show that infrared (IR) spectroscopy could provide a rapid, reproducible and cost-effective alternative to the chromatographic analysis of the sugar and organic acid composition of grape berries at various developmental stages, using small sample volumes and requiring limited sample preparation. This provides scope and support for the possible development of hand-held devices to assess quality parameters in field-settings in real-time and non-destructively using IR technologies.


Journal of Agricultural and Food Chemistry | 2015

Robust Ultraviolet–Visible (UV–Vis) Partial Least-Squares (PLS) Models for Tannin Quantification in Red Wine

José Luis Aleixandre-Tudó; Hélène H. Nieuwoudt; José Luis Aleixandre; Wessel du Toit

The validation of ultraviolet-visible (UV-vis) spectroscopy combined with partial least-squares (PLS) regression to quantify red wine tannins is reported. The methylcellulose precipitable (MCP) tannin assay and the bovine serum albumin (BSA) tannin assay were used as reference methods. To take the high variability of wine tannins into account when the calibration models were built, a diverse data set was collected from samples of South African red wines that consisted of 18 different cultivars, from regions spanning the wine grape-growing areas of South Africa with their various sites, climates, and soils, ranging in vintage from 2000 to 2012. A total of 240 wine samples were analyzed, and these were divided into a calibration set (n = 120) and a validation set (n = 120) to evaluate the predictive ability of the models. To test the robustness of the PLS calibration models, the predictive ability of the classifying variables cultivar, vintage year, and experimental versus commercial wines was also tested. In general, the statistics obtained when BSA was used as a reference method were slightly better than those obtained with MCP. Despite this, the MCP tannin assay should also be considered as a valid reference method for developing PLS calibrations. The best calibration statistics for the prediction of new samples were coefficient of correlation (R2val) = 0.89, root mean standard error of prediction (RMSEP) = 0.16, and residual predictive deviation (RPD) = 3.49 for MCP and R2val = 0.93, RMSEP = 0.08, and RPD = 4.07 for BSA, when only the UV region (260-310 nm) was selected, which also led to a faster analysis time. In addition, a difference in the results obtained when the predictive ability of the classifying variables vintage, cultivar, or commercial versus experimental wines was studied suggests that tannin composition is highly affected by many factors. This study also discusses the correlations in tannin values between the methylcellulose and protein precipitation methods.


Journal of the Science of Food and Agriculture | 2013

The relationships between consumer liking, sensory and chemical attributes of Vitis vinifera L. cv. Pinotage wines elaborated with different Oenococcus oeni starter cultures

Sulette Malherbe; Elena Menichelli; Maret du Toit; Andreas G. J. Tredoux; Nina Muller; Tormod Næs; Hélène H. Nieuwoudt

BACKGROUND Malolactic fermentation (MLF) mediated by lactic acid bacteria (LAB) has been shown to modulate chemical and sensory attributes of wine. This study investigated the relation between consumer liking, chemical and sensory attributes of Vitis vinifera L. cv. Pinotage wines that were made over two vintages by four different lactic acid Oenococcus oeni starter cultures as well as a control treatment where MLF was prevented. RESULTS Descriptive analysis showed that the sensory attributes buttery, caramel, vegetative flavour, fruity and nutty aroma differed significantly between the wines. These effects on the wines were not the same for the two vintages tested. Preference mapping results showed that the sensory attributes influenced the average consumer liking. The main chemical and sensory correlations found for MLF-treated wines were related to 2,3-butanedione (diacetyl) with the buttery character and various esters with fruity aromas. CONCLUSION Although the direct effect of the bacterial starter cultures on wine sensory attributes is difficult to establish, and subject to variation over vintage, the present work suggests that the contribution of LAB starter cultures to wine sensory attributes can influence consumer liking. Selection of an MLF starter culture can thus potentially be used to develop specific wine styles.

Collaboration


Dive into the Hélène H. Nieuwoudt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Luis Aleixandre

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Bart Nicolai

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge