Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Ibrom is active.

Publication


Featured researches published by Andreas Ibrom.


Advances in Ecological Research | 2000

Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology

Marc Aubinet; Achim Grelle; Andreas Ibrom; Üllar Rannik; John Moncrieff; Thomas Foken; Andrew S. Kowalski; Philippe H. Martin; Paul Berbigier; Christian Bernhofer; Robert Clement; J.A. Elbers; André Granier; Thomas Grünwald; K. Morgenstern; Kim Pilegaard; Corinna Rebmann; W. Snijders; Riccardo Valentini; Timo Vesala

Publisher Summary The chapter has described the measurement system and the procedure followed for the computation of the fluxes and the procedure of flux summation, including data gap filling strategy, night flux corrections and error estimation. It begins with the introduction of estimates of the annual net carbon and water exchange of forests using the EUROFLUX methodology. The chapter then provides us with the theory and moves on to discuss the eddy covariance system and its sonic anemometer, temperature fluctuation measurements, infrared gas analyser, air transport system, and tower instrumentation. Additional measurements are also given in the chapter. Data acquisition and its computation and correction is discussed next in the chapter by giving its general procedure, half-hourly means (co-)variances and uncorrected fluxes, intercomparison of software, and correction for frequency response losses. The chapter has also discussed about quality control and four criteria are investigated here for the same. Spatial representativeness of measured fluxes and summation procedure are reviewed. The chapter then moves on to the discussion of data gap filling through interpolation and parameterization and neural networks. Corrections to night-time data and error estimation are also explored in the chapter. Finally, the chapter closes with conclusions.


Nature | 2000

Respiration as the main determinant of carbon balance in European forests

Riccardo Valentini; Giorgio Matteucci; A. J. Dolman; Ernst-Detlef Schulze; Corinna Rebmann; E.J. Moors; A. Granier; P. Gross; Niels Otto Jensen; Kim Pilegaard; Anders Lindroth; Achim Grelle; Christian Bernhofer; Thomas Grünwald; Marc Aubinet; R. Ceulemans; Andrew S. Kowalski; Timo Vesala; Üllar Rannik; Paul Berbigier; Denis Loustau; J. Guðmundsson; Halldor Thorgeirsson; Andreas Ibrom; K. Morgenstern; Robert Clement; John Moncrieff; Leonardo Montagnani; S. Minerbi; P. G. Jarvis

Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its magnitude and primary locations, are under debate. Here we present data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, which confirm that many European forest ecosystems act as carbon sinks. The annual carbon balances range from an uptake of 6.6 tonnes of carbon per hectare per year to a release of nearly 1 t C ha -1 yr-1, with a large variability between forests. The data show a significant increase of carbon uptake with decreasing latitude, whereas the gross primary production seems to be largely independent of latitude. Our observations indicate that, in general, ecosystem respiration determines net ecosystem carbon exchange. Also, for an accurate assessment of the carbon balance in a particular forest ecosystem, remote sensing of the normalized difference vegetation index or estimates based on forest inventories may not be sufficient.


Global Change Biology | 2015

Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

Dorothe A. Frank; Markus Reichstein; Michael Bahn; Kirsten Thonicke; David Frank; Miguel D. Mahecha; Pete Smith; Marijn van der Velde; Sara Vicca; Flurin Babst; Christian Beer; Nina Buchmann; Josep G. Canadell; Philippe Ciais; Wolfgang Cramer; Andreas Ibrom; Franco Miglietta; Ben Poulter; Anja Rammig; Sonia I. Seneviratne; Ariane Walz; Martin Wattenbach; Miguel A. Zavala; Jakob Zscheischler

Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks.


Global Biogeochemical Cycles | 2011

Redefinition and global estimation of basal ecosystem respiration rate

Wenping Yuan; Yiqi Luo; Xianglan Li; Shuguang Liu; Guirui Yu; Tao Zhou; Michael Bahn; Andy Black; Ankur R. Desai; Alessandro Cescatti; Barbara Marcolla; C.M.J. Jacobs; Jiquan Chen; Mika Aurela; Christian Bernhofer; Bert Gielen; Gil Bohrer; David R. Cook; Danilo Dragoni; Allison L. Dunn; Damiano Gianelle; Thomas Grünwald; Andreas Ibrom; Monique Y. Leclerc; Anders Lindroth; Heping Liu; Luca Belelli Marchesini; Leonardo Montagnani; Gabriel Pita; Mirco Rodeghiero

Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from similar to 3 degrees S to similar to 70 degrees N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr (-1), with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.


The European nitrogen assessment : sources, effects and policy perspectives | 2011

Nitrogen processes in terrestrial ecosystems

Klaus Butterbach-Bahl; Per Gundersen; Per Ambus; Jürgen Augustin; Claus Beier; Pascal Boeckx; Michael Dannenmann; Benjamin Sanchez Gimeno; Andreas Ibrom; Ralf Kiese; Barbara Kitzler; Robert M. Rees; K. A. Smith; Carly J. Stevens; Timo Vesala; Sophie Zechmeister-Boltenstern

Executive summary Nature of the problem Nitrogen cycling in terrestrial ecosystems is complex and includes microbial processes such as mineralization, nitrification and denitrification, plant physiological processes (e.g. nitrogen uptake and assimilation) and physicochemical processes (leaching, volatilization). In order to understand the challenges nitrogen puts to the environment, a thorough understanding of all these processes is needed. Approaches This chapter provides an overview about processes relating to ecosystem nitrogen input and output and turnover. On the basis of examples and literature reviews, current knowledge on the effects of nitrogen on ecosystem functions is summarized, including plant and microbial processes, nitrate leaching and trace gas emissions. Key findings/state of knowledge Nitrogen cycling and nitrogen stocks in terrestrial ecosystems significantly differ between different ecosystem types (arable, grassland, shrubland, forests). Nitrogen stocks of managed systems are increased by fertilization and N retention processes are negatively affected. It is also obvious that nitrogen processes in natural and semi-natural ecosystems have already been affected by atmospheric N r input. Following perturbations of the N cycle, terrestrial ecosystems are increasingly losing N via nitrate leaching and gaseous losses (N 2 O, NO, N 2 and in agricultural systems also NH 3 ) to the environment.


Tellus B | 2007

On the use of the Webb–Pearman–Leuning theory for closed-path eddy correlation measurements

Andreas Ibrom; Ebba Dellwik; Søren Ejling Larsen; Kim Pilegaard

We consider an imperfection of real closed-path eddy correlation systems—the decoupling of the water vapour and CO2 concentrations—with respect to the application of the Webb–Pearman–Leuning (WPL) theory. It is described why and how the current application of the WPL theory needs to be adapted to the processes in closed-path sensors. We show the quantitative effects of applying the WPL theory in different ways using CO2 flux measurements taken above the Danish Beech forest CarboEurope site near Sorø, Zealand. Using the WPL theory in closed-path sensors without taking amplitude damping and decoupling into account, overcorrected the annual flux by 21%, or 31 g m-2 yr-1, to which the decoupling effect contributed with 7%. We suggest either converting the raw data point-by-point to mixing ratios or using the uncorrected covariances of water vapour mole fractions with the vertical wind velocity that were calculated with the same time lag as for the scalar concentration when correcting the dilution effect.We showed that the two approaches yielded equivalent flux results. Correct ways of applying spectral corrections to CO2 fluxes calculated in either way are also shown. The findings reported here do not apply to open-path sensors.


New Phytologist | 2014

Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites

Flurin Babst; Olivier Bouriaud; Dario Papale; Bert Gielen; Ivan A. Janssens; Eero Nikinmaa; Andreas Ibrom; Jian Wu; Christian Bernhofer; Barbara Köstner; Thomas Grünwald; Günther Seufert; Philippe Ciais; David Frank

• Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements.


Archive | 2012

Data Acquisition and Flux Calculations

Corinna Rebmann; Olaf Kolle; Bernard Heinesch; Ronald Queck; Andreas Ibrom; Marc Aubinet

In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation.


Archive | 2003

Spruce Forests (Norway and Sitka Spruce, including Douglas Fir): Carbon and water fluxes, balances, ecological and ecophysiological determinants

Christian Bernhofer; Marc Aubinet; Robert Clement; Achim Grelle; Thomas Grünwald; Andreas Ibrom; Paul Jarvis; Corinna Rebmann; Ernst-Detlef Schulze; John Tenhunen

Natural forests with a high percentage of spruce will be found in Europe only in subalpine and alpine regions or in the boreal forests of Scandinavia and Russia. Nevertheless, spruce belongs to the most important European tree species. Due to its favorable architecture and rapid growth, management practices have led to widespread monospecific spruce forests in a latitude band between 45 and 55°N. Only recently have other species such as beech and oak been included in afforestation efforts at former pure spruce sites. So today spruce is still an important forestry tree in central Europe, with a coverage for instance of about 33 % of all forested areas in Germany (Bundesministerium fur Ernahrung, Landwirtschaft und Forsten 1999).


Archive | 2003

Methodology for data acquisition, storage, and treatment

Marc Aubinet; Robert Clement; J.A. Elbers; Thomas Foken; Achim Grelle; Andreas Ibrom; John Moncrieff; Kim Pilegaard; Üllar Rannik; Corinna Rebmann

The computation of half-hourly fluxes is complex and requires the treatment of a large amount (on the order of 105) of instantaneous measurements. It requires several operations that may be performed in different ways, and experience has shown that the results were sensitive to the computation procedure. Before making any comparison between different sites, one must be assured that the fluxes are computed in the same way on each site. It is therefore necessary to define a methodology for measurement and flux computation to be used by all the network teams.

Collaboration


Dive into the Andreas Ibrom's collaboration.

Top Co-Authors

Avatar

Kim Pilegaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

G. Gravenhorst

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per Ambus

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Claus Beier

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Ebba Dellwik

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Teis Nørgaard Mikkelsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Thomas Grünwald

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Bernhofer

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge