Teis Nørgaard Mikkelsen
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Teis Nørgaard Mikkelsen.
Physiologia Plantarum | 2012
Dan Bruhn; Ian M. Møller; Teis Nørgaard Mikkelsen; Per Ambus
In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH(4) production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH(4) in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH(4) emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH(4) into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH(4) precursors in plant material.
Journal of Plant Physiology | 2011
Kristian Rost Albert; Teis Nørgaard Mikkelsen; Anders Michelsen; H. Ro-Poulsen; Leon van der Linden
Increased temperature, atmospheric CO(2) and change in precipitation patterns affect plant physiological and ecosystem processes. In combination, the interactions between these effects result in complex responses that challenge our current understanding. In a multi-factorial field experiment with elevated CO(2) (CO2, FACE), nighttime warming (T) and periodic drought (D), we investigated photosynthetic capacity and PSII performance in the evergreen dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa in a temperate heath ecosystem. Photosynthetic capacity was evaluated using A/C(i) curves, leaf nitrogen content and chlorophyll-a fluorescence OJIP induction curves. The PSII performance was evaluated via the total performance index PI(total), which integrates the function of antenna, reaction centers, electron transport and end-acceptor reduction according to the OJIP-test. The PSII performance was negatively influenced by high air temperature, low soil water content and high irradiance dose. The experimental treatments of elevated CO(2) and prolonged drought generally down-regulated J(max), V(cmax) and PI(total). Recovery from these depressions was found in the evergreen shrub after rewetting, while post-rewetting up-regulation of these parameters was observed in the grass. Warming effects acted indirectly to improve early season J(max), V(cmax) and PI(total). The responses in the multi-factorial experimental manipulations demonstrated complex interactive effects of T×CO2, D×CO2 and T×D×CO2 on photosynthetic capacity and PSII performance. The impact on the O-J, J-I and I-P phases which determine the response of PI(total) are discussed. The single factor effects on PSII performance and their interactions could be explained by parallel adjustments of V(cmax), J(max) and leaf nitrogen in combination. Despite the highly variable natural environment, the OJIP-test was very robust in detecting the impacts of T, D, CO2 and their interactions. This study demonstrates that future climate will affect fundamental plant physiological processes in a way that is not predictable from single factor treatments. The interaction effects that were observed depended upon both the growth strategy of the species considered, and their ability to adjust during drought and rewetting periods.
Plant Biology | 2009
Dan Bruhn; Teis Nørgaard Mikkelsen; J. Øbro; W. G. T. Willats; Per Ambus
This study examines the effects of different irradiance types on aerobic methane (CH(4)) efflux rates from terrestrial plant material. Furthermore, the role of the enzyme pectin methyl esterase (PME) on CH(4) efflux potential was also examined. Different types of plant tissue and purified pectin were incubated in glass vials with different combinations of irradiation and/or temperature. Purified dry pectin was incubated in solution, and with or without PME. Before and after incubation, the concentration of CH(4) was measured with a gas chromatograph. Rates of CH(4) emission were found to depend exponentially on temperature and linearly on UV-B irradiance. UV-B had a greater stimulating effect than UV-A, while visible light had no effect on emission rates. PME was found to substantially reduce the potential for aerobic CH(4) emissions upon demethylation of pectin.
Environmental Pollution | 2000
Teis Nørgaard Mikkelsen; H. Ro-Poulsen; Kim Pilegaard; M.F. Hovmand; Niels Otto Jensen; C.S. Christensen; P Hummelshoej
Patterns of ozone concentration ([O(3)]), O(3) deposition velocity (v(d)) and O(3) flux (F(c)) over an evergreen forest canopy are shown in relation to measuring method, physiological activity of the trees, and time of year. The gradient and eddy correlation methods were compared and showed similar diel v(d) patterns. Daytime F(c) was correlated with CO(2) and water vapour fluxes, while no correlation between [O(3)] in the range 10-70 ppb (nl l(-1)) and F(c) was seen in this study. F(c) was primarily driven by stomatal conductance, reactions with surfaces, particles and gases, and not by [O(3)]. On a monthly basis, [O(3)] was always highest in the afternoon while v(d) was typically higher in the morning, resulting in an equal F(c) over the day. Night-time F(c) was more than half of the daytime O(3) flux. The data reveal the importance of emissions of nitric oxide and terpenes as O(3) removal factors in evergreen forest dominated by Norway spruce.
Photosynthesis Research | 2004
Abir U. Igamberdiev; Teis Nørgaard Mikkelsen; Per Ambus; Hermann Bauwe; Peter J. Lea; Per Gardeström
The rates of respiration in light and darkness, Ci/Ca and carbon isotope fractionation were investigated in glycine decarboxylase-deficient plants of barley, potato and Arabidopsis thaliana grown in climate chambers with controlled light intensity, temperature, humidity, irradiation and different CO2 concentrations (360, 700 and 1400 µl l−1) and compared to the wild-type plants. All photorespiration-impaired plants exhibited higher Ci/Ca and corresponding lower apparent water-use efficiencies, which were more expressed under high irradiance and elevated temperature. The mutants were depleted in 13C as compared to the wild-type plants, with a difference of up to 6‰ following growth in 360 µl l−1 CO2. We determined the carbon isotope content at different CO2 concentrations to calculate the contribution of both Ci/Ca and photorespiration for 13C/12C fractionation. The direct effect of photorespiration was in the range of 0.7–1.0‰, from which we calculated the value of fractionation at the site of glycine decarboxylation as being 10–13‰, which is in agreement with the previously reported carbon isotope discrimination exerted by the glycine decarboxylase. Respiratory rates, particularly in the light, were increased in the glycine decarboxylase mutants. The necessity of the maintenance of a high CO2 concentration near the site of carboxylation in chloroplasts in plants deficient in photorespiratory enzymes, requires an increased opening of the stomata with a corresponding decrease in water-use efficiency. It is concluded that photorespiration participates in the regulation of Ci/Ca and contributes to carbon isotope fractionation, both via effects on stomata and via discrimination of 13C in the glycine decarboxylase reaction.
Physiologia Plantarum | 2008
Kristian Rost Albert; Teis Nørgaard Mikkelsen; H. Ro-Poulsen
An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B.
Water, Air, & Soil Pollution: Focus | 2001
Juha-Pekka Tuovinen; David Simpson; Teis Nørgaard Mikkelsen; Lisa Emberson; Mike Ashmore; Mika Aurela; Howard Cambridge; M.F. Hovmand; Niels Otto Jensen; Tuomas Laurila; Kim Pilegaard; H. Ro-Poulsen
The performance of a new dry deposition module, developedfor the European-scale mapping and modelling of ozone flux to vegetation, was tested against micrometeorological ozone and water vapour flux measurements. The measurement data are for twoconiferous (Scots pine in Finland, Norway spruce in Denmark) and one deciduous forest (mountain birch in Finland). On average, themodel performs well for the Scots pine forest, if local inputdata are used. The daytime deposition rates are somewhat over-predicted at the Danish site, especially in the afternoon. The mountain birch data indicate that the generic parameterisationof stomatal responses is not very representative of this northernspecies. The module was also tested by using modelled meteorological data that constitute the input for a photochemical transport model.
Ecology and Evolution | 2013
Christoph Scherber; David Joachim Gladbach; Karen Stevnbak; Rune Juelsborg Karsten; Inger Kappel Schmidt; Anders Michelsen; Kristian Rost Albert; Klaus Steenberg Larsen; Teis Nørgaard Mikkelsen; Claus Beier; Søren Christensen
The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO2, warming, drought) in a Danish heathland ecosystem. The experiment was established in 2005 as a full factorial split-plot with 6 blocks × 2 levels of CO2 × 2 levels of warming × 2 levels of drought = 48 plots. In 2008, we exposed 432 larvae (n = 9 per plot) of the heather beetle (Lochmaea suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen, and water content. Overall, drought was the most important factor for this insect herbivore. Our study shows that weight and survival of insect herbivores may decline under future climate. The complexity of insect herbivore responses increases with the number of combined climate change drivers.
Plant and Soil | 2010
Louise C. Andresen; Anders Michelsen; Sven Jonasson; Inger Kappel Schmidt; Teis Nørgaard Mikkelsen; Per Ambus; Claus Beier
Temperate terrestrial ecosystems are currently exposed to increased atmospheric CO2 and progressive climatic changes with increased temperature and periodical drought. We here present results from a field experiment, where the effects of these three main climate change related factors are investigated solely and in all combinations at a temperate heathland. Significant responses were found in the top soils below the two dominant species (Calluna vulgaris and Deschampsia flexuosa). During winter incubation, microbial immobilization of N and ammonification rate decreased in response to warming in Deschampsia soil, and microbial immobilization of N and P decreased in warmed Calluna soil. Warming tended to increase microbial N and P in Calluna but not in Deschampsia soil in fall, and more microbial C was accumulated under drought in Calluna soil. The effects of warming were often counteracted or erased when combined with CO2 and drought. Below Deschampsia, the net nitrification rate decreased in response to drought and, while phosphorus availability and microbial P immobilization decreased, but nitrification increased in response to elevated CO2. Furthermore, leaf litter decomposition of both species decreased in response to drought. These complex changes in availability and release of nutrients from soil organic matter turnover and mineralization in response to elevated CO2 and climate change may influence the future plant carbon sequestration and species composition at temperate heathlands.
Developments in environmental science | 2013
Rainer Matyssek; Nicholas Clarke; Pavel Cudlín; Teis Nørgaard Mikkelsen; Juha-Pekka Tuovinen; Gerhard Wieser; Elena Paoletti
Abstract This chapter outlines the aims and scope of the book. An introduction is given to the current status of knowledge which is presented on the topic of the book. Arguments are presented for writing the book, in view of continued, long-term and process-based research needed for mitigating ecological and socio-economic risks to forests under global change. The book will conclude on suggestions for decision making and reasons for continued funding of related research.