Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas J. Forstner is active.

Publication


Featured researches published by Andreas J. Forstner.


Nature Communications | 2014

Genome-wide association study reveals two new risk loci for bipolar disorder

Thomas W. Muehleisen; Markus Leber; Thomas G. Schulze; Jana Strohmaier; Franziska Degenhardt; Manuel Mattheisen; Andreas J. Forstner; Johannes Schumacher; René Breuer; Sandra Meier; Stefan Herms; Per Hoffmann; André Lacour; Stephanie H. Witt; Andreas Reif; Bertram Müller-Myhsok; Susanne Lucae; Wolfgang Maier; Markus J. Schwarz; Helmut Vedder; Jutta Kammerer-Ciernioch; Andrea Pfennig; Michael Bauer; Martin Hautzinger; Susanne Moebus; Lutz Priebe; Piotr M. Czerski; Joanna Hauser; Jolanta Lissowska; Neonila Szeszenia-Dabrowska

Bipolar disorder (BD) is a common and highly heritable mental illness and genome-wide association studies (GWAS) have robustly identified the first common genetic variants involved in disease aetiology. The data also provide strong evidence for the presence of multiple additional risk loci, each contributing a relatively small effect to BD susceptibility. Large samples are necessary to detect these risk loci. Here we present results from the largest BD GWAS to date by investigating 2.3 million single-nucleotide polymorphisms (SNPs) in a sample of 24,025 patients and controls. We detect 56 genome-wide significant SNPs in five chromosomal regions including previously reported risk loci ANK3, ODZ4 and TRANK1, as well as the risk locus ADCY2 (5p15.31) and a region between MIR2113 and POU3F2 (6q16.1). ADCY2 is a key enzyme in cAMP signalling and our finding provides new insights into the biological mechanisms involved in the development of BD.


Biological Psychiatry | 2017

Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium

Robert A. Power; Katherine E. Tansey; Henriette N. Buttenschøn; Sarah Cohen-Woods; Tim B. Bigdeli; Lynsey S. Hall; Zoltán Kutalik; S. Hong Lee; Stephan Ripke; Stacy Steinberg; Alexander Teumer; Alexander Viktorin; Naomi R. Wray; Volker Arolt; Bernard T. Baune; Dorret I. Boomsma; Anders D. Børglum; Enda M. Byrne; Enrique Castelao; Nicholas John Craddock; Ian Craig; Udo Dannlowski; Ian J. Deary; Franziska Degenhardt; Andreas J. Forstner; Scott D. Gordon; Hans J. Grabe; Jakob Grove; Steven P. Hamilton; Caroline Hayward

Background Major depressive disorder (MDD) is a disabling mood disorder, and despite a known heritable component, a large meta-analysis of genome-wide association studies revealed no replicable genetic risk variants. Given prior evidence of heterogeneity by age at onset in MDD, we tested whether genome-wide significant risk variants for MDD could be identified in cases subdivided by age at onset. Methods Discovery case-control genome-wide association studies were performed where cases were stratified using increasing/decreasing age-at-onset cutoffs; significant single nucleotide polymorphisms were tested in nine independent replication samples, giving a total sample of 22,158 cases and 133,749 control subjects for subsetting. Polygenic score analysis was used to examine whether differences in shared genetic risk exists between earlier and adult-onset MDD with commonly comorbid disorders of schizophrenia, bipolar disorder, Alzheimer’s disease, and coronary artery disease. Results We identified one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD (rs7647854, odds ratio: 1.16, 95% confidence interval: 1.11–1.21, p = 5.2 × 10-11). Using polygenic score analyses, we show that earlier-onset MDD is genetically more similar to schizophrenia and bipolar disorder than adult-onset MDD. Conclusions We demonstrate that using additional phenotype data previously collected by genetic studies to tackle phenotypic heterogeneity in MDD can successfully lead to the discovery of genetic risk factor despite reduced sample size. Furthermore, our results suggest that the genetic susceptibility to MDD differs between adult- and earlier-onset MDD, with earlier-onset cases having a greater genetic overlap with schizophrenia and bipolar disorder.


Frontiers in Molecular Neuroscience | 2013

MicroRNAs as the cause of schizophrenia in 22q11.2 deletion carriers, and possible implications for idiopathic disease: a mini-review

Andreas J. Forstner; Franziska Degenhardt; Gerhard Schratt; Markus M. Nöthen

The 22q11.2 deletion is the strongest known genetic risk factor for schizophrenia. Research has implicated microRNA-mediated dysregulation in 22q11.2 deletion syndrome (22q11.2DS) schizophrenia-risk. Primary candidate genes are DGCR8 (DiGeorge syndrome critical region gene 8), which encodes a component of the microprocessor complex essential for microRNA biogenesis, and MIR185, which encodes microRNA 185. Mouse models of 22q11.2DS have demonstrated alterations in brain microRNA biogenesis, and that DGCR8 haploinsufficiency may contribute to these alterations, e.g., via down-regulation of a specific microRNA subset. miR-185 was the top-scoring down-regulated microRNA in both the prefrontal cortex and the hippocampus, brain areas which are the key foci of schizophrenia research. This reduction in miR-185 expression contributed to dendritic and spine development deficits in hippocampal neurons. In addition, miR-185 has two validated targets (RhoA, Cdc42), both of which have been associated with altered expression levels in schizophrenia. These combined data support the involvement of miR-185 and its down-stream pathways in schizophrenia. This review summarizes evidence implicating microRNA-mediated dysregulation in schizophrenia in both 22q11.2DS-related and idiopathic cases.


Translational Psychiatry | 2015

Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder

Andreas J. Forstner; Andrea Hofmann; Anna Maaser; S Sumer; Sharof Khudayberdiev; Thomas W. Mühleisen; Markus Leber; Thomas G. Schulze; Jana Strohmaier; Franziska Degenhardt; J Treutlein; Manuel Mattheisen; Johannes Schumacher; René Breuer; Sandra Meier; Stefan Herms; Per Hoffmann; A Lacour; Stephanie H. Witt; Andreas Reif; Bertram Müller-Myhsok; Susanne Lucae; W. Maier; Markus Schwarz; Helmut Vedder; Jutta Kammerer-Ciernioch; Andrea Pfennig; Michael Bauer; Martin Hautzinger; Susanne Moebus

Bipolar disorder (BD) is a severe and highly heritable neuropsychiatric disorder with a lifetime prevalence of 1%. Molecular genetic studies have identified the first BD susceptibility genes. However, the disease pathways remain largely unknown. Accumulating evidence suggests that microRNAs, a class of small noncoding RNAs, contribute to basic mechanisms underlying brain development and plasticity, suggesting their possible involvement in the pathogenesis of several psychiatric disorders, including BD. In the present study, gene-based analyses were performed for all known autosomal microRNAs using the largest genome-wide association data set of BD to date (9747 patients and 14 278 controls). Associated and brain-expressed microRNAs were then investigated in target gene and pathway analyses. Functional analyses of miR-499 and miR-708 were performed in rat hippocampal neurons. Ninety-eight of the six hundred nine investigated microRNAs showed nominally significant P-values, suggesting that BD-associated microRNAs might be enriched within known microRNA loci. After correction for multiple testing, nine microRNAs showed a significant association with BD. The most promising were miR-499, miR-708 and miR-1908. Target gene and pathway analyses revealed 18 significant canonical pathways, including brain development and neuron projection. For miR-499, four Bonferroni-corrected significant target genes were identified, including the genome-wide risk gene for psychiatric disorder CACNB2. First results of functional analyses in rat hippocampal neurons neither revealed nor excluded a major contribution of miR-499 or miR-708 to dendritic spine morphogenesis. The present results suggest that research is warranted to elucidate the precise involvement of microRNAs and their downstream pathways in BD.


PLOS ONE | 2017

Identification of shared risk loci and pathways for bipolar disorder and schizophrenia

Andreas J. Forstner; Julian Hecker; Andrea Hofmann; Anna Maaser; Céline S. Reinbold; Thomas W. Mühleisen; Markus Leber; Jana Strohmaier; Franziska Degenhardt; Manuel Mattheisen; Johannes Schumacher; Fabian Streit; Sandra Meier; Stefan Herms; Per Hoffmann; André Lacour; Stephanie H. Witt; Andreas Reif; Bertram Müller-Myhsok; Susanne Lucae; Wolfgang Maier; Markus Schwarz; Helmut Vedder; Jutta Kammerer-Ciernioch; Andrea Pfennig; Michael Bauer; Martin Hautzinger; Susanne Moebus; Lorena M. Schenk; Sascha B. Fischer

Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. BD shows substantial clinical and genetic overlap with other psychiatric disorders, in particular schizophrenia (SCZ). The genes underlying this etiological overlap remain largely unknown. A recent SCZ genome wide association study (GWAS) by the Psychiatric Genomics Consortium identified 128 independent genome-wide significant single nucleotide polymorphisms (SNPs). The present study investigated whether these SCZ-associated SNPs also contribute to BD development through the performance of association testing in a large BD GWAS dataset (9747 patients, 14278 controls). After re-imputation and correction for sample overlap, 22 of 107 investigated SCZ SNPs showed nominal association with BD. The number of shared SCZ-BD SNPs was significantly higher than expected (p = 1.46x10-8). This provides further evidence that SCZ-associated loci contribute to the development of BD. Two SNPs remained significant after Bonferroni correction. The most strongly associated SNP was located near TRANK1, which is a reported genome-wide significant risk gene for BD. Pathway analyses for all shared SCZ-BD SNPs revealed 25 nominally enriched gene-sets, which showed partial overlap in terms of the underlying genes. The enriched gene-sets included calcium- and glutamate signaling, neuropathic pain signaling in dorsal horn neurons, and calmodulin binding. The present data provide further insights into shared risk loci and disease-associated pathways for BD and SCZ. This may suggest new research directions for the treatment and prevention of these two major psychiatric disorders.


Psychoneuroendocrinology | 2016

Perceived stress and hair cortisol: Differences in bipolar disorder and schizophrenia

Fabian Streit; Amra Memic; Lejla Hasandedić; Liz Rietschel; Josef Frank; Maren Lang; Stephanie H. Witt; Andreas J. Forstner; Franziska Degenhardt; Stefan Wüst; Markus M. Nöthen; Clemens Kirschbaum; Jana Strohmaier; Lilijana Oruč; Marcella Rietschel

INTRODUCTION Bipolar disorder (BD) and schizophrenia (SCZ) are psychiatric disorders with shared and distinct clinical and genetic features. In both disorders, stress increases the risk for onset or relapse and dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis has been reported. The latter is frequently investigated by measuring changes in the hormonal end product of the HPA axis, i.e., the glucocorticoid cortisol, whose concentration exhibits diurnal variation. The analysis of hair cortisol concentration (HCC) is a new method, which allows assessment of cumulative cortisol secretion over the preceding three months. AIMS To explore whether perceived stress and HCC: (i) differ between BD patients, SCZ patients, and controls; (ii) change over disease course; and iii) are associated with an increased genetic risk for BD or SCZ. METHODS 159 SCZ patients, 61 BD patients and 82 controls were included. Assessment included psychopathology, perceived stress, and HCC. Inpatients with an acute episode (38 BD and 77 SCZ) were assessed shortly after admission to hospital and at 3 and 6 months follow-up. Outpatients in remission and controls were assessed at one time point only. Polygenic risk scores for BD and SCZ were calculated based on results of the Psychiatric Genomic Consortium. RESULTS (i) Perceived stress was higher in BD and SCZ patients compared to controls (p<0.02), and was lower in outpatients in remission compared to inpatients on admission. HCC was higher in BD patients compared to SCZ patients and controls (p<0.02), and higher in inpatients on admission than in outpatients in remission (p=0.0012). In BD patients (r=0.29; p=0.033) and SCZ patients (r=0.20; p=0.024) manic symptoms were correlated with HCC. (ii) In both BD and SCZ inpatients, perceived stress decreased over the 6 month study period (p=0.048), while HCC did not change significantly over the 6 month study period. (iii) In controls, but not in the patient groups, the genetic risk score for BD was associated with HCC (r=0.28, p=0.023). CONCLUSIONS While our results are consistent with previous reports of increased perceived stress in BD and SCZ, they suggest differential involvement of the HPA axis in the two disorders. The genetic study supports this latter finding, and suggests that this effect is present below the threshold of manifest disorder.


Molecular Psychiatry | 2018

The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders

Hsing-Yi Chang; Naosuke Hoshina; Chen Zhang; Yina Ma; H Cao; Yunfei Wang; D-d Wu; Sarah E. Bergen; Mikael Landén; C. M. Hultman; Martin Preisig; Zoltán Kutalik; Enrique Castelao; Maria Grigoroiu-Serbanescu; Andreas J. Forstner; Jana Strohmaier; Julian Hecker; Thomas G. Schulze; Bertram Müller-Myhsok; Andreas Reif; Philip B. Mitchell; Nicholas G. Martin; Peter R. Schofield; S. Cichon; M. M. Nöthen; Lena Backlund; Louise Frisén; Catharina Lavebratt; Martin Schalling; Urban Ösby

Major mood disorders, which primarily include bipolar disorder and major depressive disorder, are the leading cause of disability worldwide and pose a major challenge in identifying robust risk genes. Here, we present data from independent large-scale clinical data sets (including 29 557 cases and 32 056 controls) revealing brain expressed protocadherin 17 (PCDH17) as a susceptibility gene for major mood disorders. Single-nucleotide polymorphisms (SNPs) spanning the PCDH17 region are significantly associated with major mood disorders; subjects carrying the risk allele showed impaired cognitive abilities, increased vulnerable personality features, decreased amygdala volume and altered amygdala function as compared with non-carriers. The risk allele predicted higher transcriptional levels of PCDH17 mRNA in postmortem brain samples, which is consistent with increased gene expression in patients with bipolar disorder compared with healthy subjects. Further, overexpression of PCDH17 in primary cortical neurons revealed significantly decreased spine density and abnormal dendritic morphology compared with control groups, which again is consistent with the clinical observations of reduced numbers of dendritic spines in the brains of patients with major mood disorders. Given that synaptic spines are dynamic structures which regulate neuronal plasticity and have crucial roles in myriad brain functions, this study reveals a potential underlying biological mechanism of a novel risk gene for major mood disorders involved in synaptic function and related intermediate phenotypes.


Schizophrenia Research | 2011

Resequencing and follow-up of neurexin 1 (NRXN1) in schizophrenia patients

Thomas W. Mühleisen; F. Buket Basmanav; Andreas J. Forstner; Manuel Mattheisen; Lutz Priebe; Stefan Herms; René Breuer; Susanne Moebus; Igor Nenadic; Heinrich Sauer; Rainald Mössner; Wolfgang Maier; Dan Rujescu; Michael Ludwig; Marcella Rietschel; Markus M. Nöthen; Sven Cichon

Large rare deletions in NRXN1 increase the risk for schizophrenia. The aim of the present study was to determine whether small rare sequence changes in exons and splice sites contribute to the development of schizophrenia in a high-penetrance manner. Complete coding regions and splice sites were resequenced in 94 patients and 94 controls. Among the 16 rare sequence variants, two missense substitutions (E201G and I1068V) were observed in single patients but not in controls. Investigation of DNA samples from family members and in silico analysis of possible effects on protein function produced no evidence of high-penetrance genetic effects. Follow-up genotyping of the most promising findings (E201G and I1068V) in an independent sample of >1400 patients and >1100 controls revealed no overrepresentation in patients compared to controls (E201G: 0/1 and I1068V: 0/0). Since I1068V was observed in a single patient, it is impossible to exclude the possibility that I1068V makes a minor contribution to schizophrenia susceptibility. Overall, however, the results do not suggest the existence of rare, highly penetrant NRXN1 mutations in patients with schizophrenia.


Molecular Psychiatry | 2017

GLRB allelic variation associated with agoraphobic cognitions, increased startle response and fear network activation : a potential neurogenetic pathway to panic disorder

Jürgen Deckert; Heike Weber; C Villmann; Tina B. Lonsdorf; Jan Richter; Marta Andreatta; Alejandro Arias-Vasquez; L Hommers; Lindsey Kent; C. Schartner; Sven Cichon; C Wolf; N Schaefer; C R von Collenberg; B Wachter; Robert Blum; Dirk Schümann; R Scharfenort; J Schumacher; Andreas J. Forstner; Christian Baumann; M A Schiele; Swantje Notzon; Peter Zwanzger; Joost Janzing; Tessel E. Galesloot; Lambertus A. Kiemeney; Agnieszka Gajewska; Evelyn Glotzbach-Schoon; Andreas Mühlberger

The molecular genetics of panic disorder (PD) with and without agoraphobia (AG) are still largely unknown and progress is hampered by small sample sizes. We therefore performed a genome-wide association study with a dimensional, PD/AG-related anxiety phenotype based on the Agoraphobia Cognition Questionnaire (ACQ) in a sample of 1370 healthy German volunteers of the CRC TRR58 MEGA study wave 1. A genome-wide significant association was found between ACQ and single non-coding nucleotide variants of the GLRB gene (rs78726293, P=3.3 × 10−8; rs191260602, P=3.9 × 10−8). We followed up on this finding in a larger dimensional ACQ sample (N=2547) and in independent samples with a dichotomous AG phenotype based on the Symptoms Checklist (SCL-90; N=3845) and a case–control sample with the categorical phenotype PD/AG (Ncombined =1012) obtaining highly significant P-values also for GLRB single-nucleotide variants rs17035816 (P=3.8 × 10−4) and rs7688285 (P=7.6 × 10−5). GLRB gene expression was found to be modulated by rs7688285 in brain tissue, as well as cell culture. Analyses of intermediate PD/AG phenotypes demonstrated increased startle reflex and increased fear network, as well as general sensory activation by GLRB risk gene variants rs78726293, rs191260602, rs17035816 and rs7688285. Partial Glrb knockout mice demonstrated an agoraphobic phenotype. In conjunction with the clinical observation that rare coding GLRB gene mutations are associated with the neurological disorder hyperekplexia characterized by a generalized startle reaction and agoraphobic behavior, our data provide evidence that non-coding, although functional GLRB gene polymorphisms may predispose to PD by increasing startle response and agoraphobic cognitions.


Translational Psychiatry | 2016

Exome chip analyses in adult attention deficit hyperactivity disorder

Tetyana Zayats; Kaya Kvarme Jacobsen; Rune Kleppe; Christian Jacob; Sarah Kittel-Schneider; Marta Ribasés; J.A. Ramos-Quiroga; Vanesa Richarte; M. Casas; Nina R. Mota; Eugenio H. Grevet; Marieke Klein; Jordi Corominas; Janita Bralten; Tessel E. Galesloot; A. Arias Vasquez; Stefan Herms; Andreas J. Forstner; Henrik Larsson; Gerome Breen; Philip Asherson; Silke Gross-Lesch; K.P. Lesch; Sven Cichon; Maiken Elvestad Gabrielsen; Oddgeir L. Holmen; Claiton Henrique Dotto Bau; Jan K. Buitelaar; Lambertus A. Kiemeney; Stephen V. Faraone

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable childhood-onset neuropsychiatric condition, often persisting into adulthood. The genetic architecture of ADHD, particularly in adults, is largely unknown. We performed an exome-wide scan of adult ADHD using the Illumina Human Exome Bead Chip, which interrogates over 250 000 common and rare variants. Participants were recruited by the International Multicenter persistent ADHD CollaboraTion (IMpACT). Statistical analyses were divided into 3 steps: (1) gene-level analysis of rare variants (minor allele frequency (MAF)<1%); (2) single marker association tests of common variants (MAF⩾1%), with replication of the top signals; and (3) pathway analyses. In total, 9365 individuals (1846 cases and 7519 controls) were examined. Replication of the most associated common variants was attempted in 9847 individuals (2077 cases and 7770 controls) using fixed-effects inverse variance meta-analysis. With a Bonferroni-corrected significance level of 1.82E−06, our analyses of rare coding variants revealed four study-wide significant loci: 6q22.1 locus (P=4.46E−08), where NT5DC1 and COL10A1 reside; the SEC23IP locus (P=6.47E−07); the PSD locus (P=7.58E−08) and ZCCHC4 locus (P=1.79E−06). No genome-wide significant association was observed among the common variants. The strongest signal was noted at rs9325032 in PPP2R2B (odds ratio=0.81, P=1.61E−05). Taken together, our data add to the growing evidence of general signal transduction molecules (NT5DC1, PSD, SEC23IP and ZCCHC4) having an important role in the etiology of ADHD. Although the biological implications of these findings need to be further explored, they highlight the possible role of cellular communication as a potential core component in the development of both adult and childhood forms of ADHD.

Collaboration


Dive into the Andreas J. Forstner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge