Andreas Jaakko Metz
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Jaakko Metz.
NeuroImage | 2014
Felix Scholkmann; Stefan Kleiser; Andreas Jaakko Metz; Raphael Zimmermann; Juan Mata Pavia; Ursula Wolf; Martin Wolf
This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects.
Physiological Measurement | 2014
Felix Scholkmann; Andreas Jaakko Metz; Martin Wolf
Continuous-wave near-infrared spectroscopy and imaging enable tissue hemodynamics and oxygenation to be determined non-invasively. Movements of the investigated subject can cause movement artifacts (MAs) in the recorded signals. The strength and type of MAs induced depend on the measurement principle. The aim of the present study was to investigate the quantitative relationship between different single-distance (SD) and multi-distance (MD) measurement methods and their susceptibility to MAs. We found that each method induces MAs to a different degree, and that MD methods are more robust against MAs than SD methods.
Sleep | 2015
Fiona Pugin; Andreas Jaakko Metz; Martin Wolf; Peter Achermann; Oskar G. Jenni; Reto Huber
STUDY OBJECTIVES Evidence is accumulating that electroencephalographic (EEG) sleep slow wave activity (SWA), the key characteristic of deep sleep, is regulated not only globally, but also locally. Several studies have shown local learning- and use-dependent changes in SWA. In vitro and in vivo animal experiments and studies in humans indicate that these local changes in SWA reflect synaptic plasticity. During maturation, when synaptic changes are most prominent, learning is of utmost importance. Thus, in this study, we aimed to examine whether intensive working memory training for 3 w would lead to a local increase of sleep SWA using high-density EEG recordings in children and young adolescents. SETTING Sleep laboratory at the University Childrens Hospital Zurich. PARTICIPANTS Fourteen healthy subjects between 10 and 16 y. INTERVENTIONS Three weeks of intensive working memory training. MEASUREMENTS AND RESULTS After intensive working memory training, sleep SWA was increased in a small left frontoparietal cluster (11.06 ± 1.24%, mean ± standard error of the mean). In addition, the local increase correlated positively with increased working memory performance assessed immediately (r = 0.66) and 2 to 5 mo (r = 0.68) after the training. CONCLUSIONS The increase in slow wave activity (SWA) correlates with cognitive training-induced plasticity in a region known to be involved in working memory performance. Thus, in future, the mapping of sleep SWA may be used to longitudinally monitor the effects of working memory training in children and adolescents with working memory deficiencies.
Advances in Experimental Medicine and Biology | 2013
Andreas Jaakko Metz; Martin Biallas; Carmen Jenny; Thomas Muehlemann; Martin Wolf
Tissue oxygen saturation (StO(2)), a potentially important parameter in clinical practice, can be measured by near infrared spectroscopy (NIRS). Various devices use the multi-distance approach based on the diffusion approximation of the radiative transport equation [1, 2]. When determining the absorption coefficient (μ (a)) by the slope over multiple distances a common assumption is to neglect μ (a) in the diffusion constant, or to assume the scattering coefficient (μ(s)) to be constant over the wavelength. Also the water influence can be modeled by simply subtracting a water term from the absorption. This gives five approaches A1-A5. The aim was to test how these different methods influence the StO(2) values. One data set of 30 newborn infants measured on the head and another of eight adults measured on the nondominant forearm were analyzed. The calculated average StO(2) values measured on the head were (mean ± SD): A1: 79.99 ± 4.47%, A2: 81.44 ± 4.08%, A3: 84.77 ± 4.87%, A4: 85.69 ± 4.38%, and A5: 72.85 ± 4.81%. The StO(2) values for the adult forearms are: A1: 58.14 ± 5.69%, A2: 73.85 ± 4.77%, A3: 58.99 ± 5.67%, A4: 74.21 ± 4.76%, and A5: 63.49 ± 5.11%. Our results indicate that StO(2) depends strongly on the assumptions. Since StO(2) is an absolute value, comparability between different studies is reduced if the assumptions of the algorithms are not published.
F1000Research | 2014
Fiona Pugin; Andreas Jaakko Metz; Madlaina Stauffer; Martin Wolf; Oskar G. Jenni; Reto Huber
Working memory is important for mental reasoning and learning processes. Several studies in adults and school-age children have shown performance improvement in cognitive tests after working memory training. Our aim was to examine not only immediate but also long-term effects of intensive working memory training on cognitive performance tests in children and adolescents. Fourteen healthy male subjects between 10 and 16 years trained a visuospatial n-back task over 3 weeks (30 min daily), while 15 individuals of the same age range served as a passive control group. Significant differences in immediate (after 3 weeks of training) and long-term effects (after 2-6 months) in an auditory n-back task were observed compared to controls (2.5 fold immediate and 4.7 fold long-term increase in the training group compared to the controls). The improvement was more pronounced in subjects who improved their performance during the training. Other cognitive functions (matrices test and Stroop task) did not change when comparing the training group to the control group. We conclude that spatial working memory training in children and adolescents boosts performance in similar memory tasks such as the auditory n-back task. The sustained performance improvement several months after the training supports the effectiveness of the training.
Algorithms | 2015
Andreas Jaakko Metz; Martin Wolf; Peter Achermann; Felix Scholkmann
Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.
Advances in Experimental Medicine and Biology | 2016
Tharindi Hapuarachchi; Felix Scholkmann; Matthew Caldwell; Cornelia Hagmann; Stefan Kleiser; Andreas Jaakko Metz; M. Pastewski; M. Wolf; Ilias Tachtsidis
We present a computational model of metabolism in the preterm neonatal brain. The model has the capacity to mimic haemodynamic and metabolic changes during functional activation and simulate functional near-infrared spectroscopy (fNIRS) data. As an initial test of the model’s efficacy, we simulate data obtained from published studies investigating functional activity in preterm neonates. In addition we simulated recently collected data from preterm neonates during visual activation. The model is well able to predict the haemodynamic and metabolic changes from these observations. In particular, we found that changes in cerebral blood flow and blood pressure may account for the observed variability of the magnitude and sign of stimulus-evoked haemodynamic changes reported in preterm infants.
F1000Research | 2014
Fiona Pugin; Andreas Jaakko Metz; Madlaina Stauffer; Martin Wolf; Oskar G. Jenni; Reto Huber
Working memory is important for mental reasoning and learning processes. Several studies in adults and school-age children have shown performance improvement in cognitive tests after working memory training. Our aim was to examine not only immediate but also long-term effects of intensive working memory training on cognitive performance tests in children. Fourteen healthy male subjects between 10 and 16 years trained a visuospatial n-back task over 3 weeks (30 min daily), while 15 individuals of the same age range served as a passive control group. Significant differences in immediate (after 3 weeks of training) and long-term effects (after 2-6 months) in an auditory n-back task were observed compared to controls (2.5 fold immediate and 4.7 fold long-term increase in the training group compared to the controls). The improvement was more pronounced in subjects who improved their performance during the training. Other cognitive functions (matrices test and Stroop task) did not change when comparing the training group to the control group. We conclude that visuospatial working memory training in children boosts performance in similar memory tasks such as the auditory n-back task. The sustained performance improvement several months after the training supports the effectiveness of the training.
Advances in Experimental Medicine and Biology | 2014
Andreas Jaakko Metz; Fiona Pugin; Reto Huber; Peter Achermann; Martin Wolf
In adults, cerebral oxy-([O₂Hb]) and deoxyhemoglobin concentrations ([HHb]) change characteristically at transitions of sleep stages. The aims were to assess these changes in adolescents and additionally to measure tissue oxygen saturation (StO₂) by near infrared spectroscopy (NIRS). Previously it was reported that in adults [O₂Hb] increased and [HHb] decreased at the transition from non-rapid eye movement sleep (NREMS) to REMS and wakefulness. Transitions to NREMS from REMS/wakefulness led to a decrease in [O₂Hb] and an increase in [HHb]. We measured [O₂Hb], [HHb] and tissue oxygenation (StO₂) with NIRS approximately above the left prefrontal cortex in 12 healthy adolescent males (aged 10-16 years). We found comparable signs and magnitudes of changes in [O₂Hb] and [HHb] as observed in adults. StO₂ increased at the transitions from NREMS to REMS and decreased from REMS to NREMS and at sleep onset (all p < 0.01, linear mixed effects model). Changes in oxygen metabolism during sleep transitions are similar in adolescents and adults. In addition, we show for the first time temporal changes of StO₂ at sleep transitions.
Advances in Experimental Medicine and Biology | 2013
Andreas Jaakko Metz; Fiona Pugin; Reto Huber; Peter Achermann; Martin Wolf
How does the oxygen metabolism change during sleep? We aimed to measure the change in brain tissue oxygen saturation (StO2) before and after sleep with near-infrared spectroscopy (NIRS) using an in-house developed sensor. According to the synaptic homeostasis hypothesis [1], synaptic downscaling during sleep would result in reduced energy consumption. Thus, this reduced energy demands should be reflected in the oxygen metabolism and StO2. Thirteen nights of 7 male subjects (age 11-16 years, one subject contributed only one night, all others two) were included in the analysis. We performed NIRS measurements throughout the entire night. The NIRS sensor was placed close to electrode position Fp1 (international 10/20 system), over the left frontal cortex. Absolute StO2 and total haemoglobin (tHb) were calculated from the NIRS measurements using a self-calibrating method [2]. StO2 and tHb during the awake period prior to sleep and after awakening were compared. The subjects were instructed to lie in bed in the same position before and after sleep. Values of the two nights were averaged for each subject. Furthermore, a linear regression line was fit through the all-night StO2 recordings. We found an increase in StO2 by 4.32 ± 1.76 % (mean ± SD, paired t-test p < 0.001, n = 7) in the morning compared to evening, while tHb did not change (1.02 ± 6.81 μM p = 0.704, n = 7). Since the tHb remained at a similar level after sleep, this increase in StO2 indicates that in the morning more oxygenated blood and less deoxygenated blood was present in the brain compared to the evening. The slope of the regression line was 0.37 ± 0.13 % h(-1) leading to a similar increase of StO2 in the course of sleep. This may be interpreted as a reduced oxygen consumption or energy metabolism after sleep.