Andreas Mittelberger
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Mittelberger.
Nano Letters | 2017
Giacomo Argentero; Andreas Mittelberger; Mohammad Reza Ahmadpour Monazam; Yang Cao; Timothy J. Pennycook; Clemens Mangler; Christian Kramberger; Jani Kotakoski; A. K. Geim; Jannik C. Meyer
In this work we demonstrate that a free-standing van der Waals heterostructure, usually regarded as a flat object, can exhibit an intrinsic buckled atomic structure resulting from the interaction between two layers with a small lattice mismatch. We studied a freely suspended membrane of well-aligned graphene on a hexagonal boron nitride (hBN) monolayer by transmission electron microscopy (TEM) and scanning TEM (STEM). We developed a detection method in the STEM that is capable of recording the direction of the scattered electron beam and that is extremely sensitive to the local stacking of atoms. A comparison between experimental data and simulated models shows that the heterostructure effectively bends in the out-of-plane direction, producing an undulated structure having a periodicity that matches the moiré wavelength. We attribute this rippling to the interlayer interaction and also show how this affects the intralayer strain in each layer.
Scientific Reports | 2017
Toma Susi; Viera Skakalova; Andreas Mittelberger; Peter Kotrusz; Martin Hulman; Timothy J. Pennycook; Clemens Mangler; Jani Kotakoski; Jannik C. Meyer
While an increasing number of two-dimensional (2D) materials, including graphene and silicene, have already been realized, others have only been predicted. An interesting example is the two-dimensional form of silicon carbide (2D-SiC). Here, we present an observation of atomically thin and hexagonally bonded nanosized grains of SiC assembling temporarily in graphene oxide pores during an atomic resolution scanning transmission electron microscopy experiment. Even though these small grains do not fully represent the bulk crystal, simulations indicate that their electronic structure already approaches that of 2D-SiC. This is predicted to be flat, but some doubts have remained regarding the preference of Si for sp3 hybridization. Exploring a number of corrugated morphologies, we find completely flat 2D-SiC to have the lowest energy. We further compute its phonon dispersion, with a Raman-active transverse optical mode, and estimate the core level binding energies. Finally, we study the chemical reactivity of 2D-SiC, suggesting it is like silicene unstable against molecular absorption or interlayer linking. Nonetheless, it can form stable van der Waals-bonded bilayers with either graphene or hexagonal boron nitride, promising to further enrich the family of two-dimensional materials once bulk synthesis is achieved.
arXiv: Materials Science | 2017
Toma Susi; Trevor P. Hardcastle; H. Hofsäss; Andreas Mittelberger; Timothy J. Pennycook; Clemens Mangler; Rik Drummond-Brydson; A.J. Scott; Jannik C. Meyer; Jani Kotakoski
One of the keys behind the success of modern semiconductor technology has been the ion implantation of silicon, which allows its electronic properties to be tailored. For similar purposes, heteroatoms have been introduced into carbon nanomaterials both during growth and using post-growth methods. However, due to the nature of the samples, it has been challenging to determine whether the heteroatoms have been incorporated into the lattice as intended. Direct observations have so far been limited to N and B dopants, and incidental Si impurities. Furthermore, ion implantation of these materials is challenging due to the requirement of very low ion energies and atomically clean surfaces. Here, we provide the first atomic-resolution imaging and electron energy loss spectroscopy (EELS) evidence of phosphorus atoms in the graphene lattice, implanted by low-energy ion irradiation. The measured P L 2,3-edge shows excellent agreement with an ab initio spectrum simulation, conclusively identifying the P in a buckled substitutional configuration. While advancing the use of EELS for single-atom spectroscopy, our results demonstrate the viability of phosphorus as a lattice dopant in sp 2-bonded carbon structures and provide its unmistakable fingerprint for further studies.
Microscopy and Microanalysis | 2017
Andreas Mittelberger; Christian Kramberger; Christoph Hofer; Clemens Mangler; Jannik C. Meyer
Beam damage is a major limitation in electron microscopy that becomes increasingly severe at higher resolution. One possible route to circumvent radiation damage, which forms the basis for single-particle electron microscopy and related techniques, is to distribute the dose over many identical copies of an object. For the acquisition of low-dose data, ideally no dose should be applied to the region of interest before the acquisition of data. We present an automated approach that can collect large amounts of data efficiently by acquiring images in a user-defined area-of-interest with atomic resolution. We demonstrate that the stage mechanics of the Nion UltraSTEM, combined with an intelligent algorithm to move the sample, allow the automated acquisition of atomically resolved images from micron-sized areas of a graphene substrate. Moving the sample stage automatically in a regular pattern over the area-of-interest enables the collection of data from pristine sample regions without exposing them to the electron beam before recording an image. Therefore, it is possible to obtain data with minimal dose (no prior exposure during focusing), which is only limited by the minimum signal needed for data processing. This enables us to minimize beam-induced damage in the sample and to acquire large data sets within a reasonable amount of time.
Nano Letters | 2018
Mukesh Tripathi; Andreas Mittelberger; Nicholas Pike; Clemens Mangler; Jannik C. Meyer; Matthieu Verstraete; Jani Kotakoski; Toma Susi
The direct manipulation of individual atoms in materials using scanning probe microscopy has been a seminal achievement of nanotechnology. Recent advances in imaging resolution and sample stability have made scanning transmission electron microscopy a promising alternative for single-atom manipulation of covalently bound materials. Pioneering experiments using an atomically focused electron beam have demonstrated the directed movement of silicon atoms over a handful of sites within the graphene lattice. Here, we achieve a much greater degree of control, allowing us to precisely move silicon impurities along an extended path, circulating a single hexagon, or back and forth between the two graphene sublattices. Even with manual operation, our manipulation rate is already comparable to the state-of-the-art in any atomically precise technique. We further explore the influence of electron energy on the manipulation rate, supported by improved theoretical modeling taking into account the vibrations of atoms near the impurities, and implement feedback to detect manipulation events in real time. In addition to atomic-level engineering of its structure and properties, graphene also provides an excellent platform for refining the accuracy of quantitative models and for the development of automated manipulation.
arXiv: Materials Science | 2018
Toma Susi; Mattia Scardamaglia; Kimmo Mustonen; Andreas Mittelberger; Mohamed Al-Hada; Matteo Amati; Hikmet Sezen; Patrick Zeller; Ask H. Larsen; Clemens Mangler; Jannik C. Meyer; Luca Gregoratti; Carla Bittencourt; Jani Kotakoski
X-ray photoelectron spectroscopy of graphene is important both for its characterization and as a model for other carbon materials. Despite great recent interest, the intrinsic photoemission of its single layer has not been unambiguously measured, nor is the layer-dependence in free-standing multilayers accurately determined. We combine scanning transmission electron microscopy and Raman spectroscopy with synchrotron-based scanning photoelectron microscopy to characterize the same areas of suspended graphene samples down to the atomic level. This allows us to assign spectral signals to regions of precisely known layer number and purity. The core level binding energy of the monolayer is measured at 284.70 eV, thus 0.28 eV higher than that of graphite, with intermediate values found for few layers. This trend is reproduced by density functional theory with or without explicit van der Waals interactions, indicating that intralayer charge rearrangement dominates, but in our model of static screening the magnitudes of the shifts are underestimated by half.
Ultramicroscopy | 2018
Andreas Mittelberger; Christian Kramberger; Jannik C. Meyer
The performance of the detector is of key importance for low-dose imaging in transmission electron microscopy, and counting every single electron can be considered as the ultimate goal. In scanning transmission electron microscopy, low-dose imaging can be realized by very fast scanning, however, this also introduces artifacts and a loss of resolution in the scan direction. We have developed a software approach to correct for artifacts introduced by fast scans, making use of a scintillator and photomultiplier response that extends over several pixels. The parameters for this correction can be directly extracted from the raw image. Finally, the images can be converted into electron counts. This approach enables low-dose imaging in the scanning transmission electron microscope via high scan speeds while retaining the image quality of artifact-free slower scans.
Spectroscopy | 2018
M.V. Kharlamova; Christian Kramberger; Andreas Mittelberger; Kazuhiro Yanagi; T. Pichler; Dominik Eder
The internal channels of semiconducting single-walled carbon nanotubes (SWCNTs) were filled with silver chloride. The filling was confirmed by high-resolution scanning transmission electron microscopy. The filling-induced modifications of Raman modes of SWCNTs were analyzed. The fitting of the radial breathing mode (RBM) and G-bands of Raman spectra of the pristine and filled nanotubes with individual components allowed analyzing in detail the influence of encapsulated silver chloride on the electronic properties of different diameter nanotubes. The analysis of the RBM-band allowed revealing the changes in resonance excitation conditions of SWCNTs upon filling. The analysis of the G-band allowed concluding about p-doping of nanotubes by incorporated silver chloride accompanied by charge transfer from nanotubes to the inserted salt.
Scientific Reports | 2018
Andreas Mittelberger; Christian Kramberger; Jannik C. Meyer
Atomically resolved images of monolayer organic crystals have only been obtained with scanning probe methods so far. On the one hand, they are usually prepared on surfaces of bulk materials, which are not accessible by (scanning) transmission electron microscopy. On the other hand, the critical electron dose of a monolayer organic crystal is orders of magnitudes lower than the one for bulk crystals, making (scanning) transmission electron microscopy characterization very challenging. In this work we present an atomically resolved study on the dynamics of a monolayer CuPcCl16 crystal under the electron beam as well as an image of the undamaged molecules obtained by low-dose electron microscopy. The results show the dynamics and the radiation damage mechanisms in the 2D layer of this material, complementing what has been found for bulk crystals in earlier studies. Furthermore, being able to image the undamaged molecular crystal allows the characterization of new composites consisting of 2D materials and organic molecules.
Physica Status Solidi B-basic Solid State Physics | 2017
Christian Kramberger; Andreas Mittelberger; Christoph Hofer; Jannik C. Meyer
Freestanding graphene displays an outstanding resilience to electron irradiation at low electron energies. Point defects in graphene are, however, subject to beam driven dynamics. This means that high resolution micrographs of point defects, which usually require a high electron irradiation dose might not represent the intrinsic defect population. Here, we capture the inital defects formed by ejecting carbon atoms under electron irradiation, by imaging with very low doses and subsequent reconstruction of the frequently occuring defects via a maximum likelihood algorithm.