Toma Susi
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toma Susi.
Beilstein Journal of Nanotechnology | 2015
Toma Susi; T. Pichler; Paola Ayala
Summary X-ray photoelectron spectroscopy (XPS) is one of the best tools for studying the chemical modification of surfaces, and in particular the distribution and bonding of heteroatom dopants in carbon nanomaterials such as graphene and carbon nanotubes. Although these materials have superb intrinsic properties, these often need to be modified in a controlled way for specific applications. Towards this aim, the most studied dopants are neighbors to carbon in the periodic table, nitrogen and boron, with phosphorus starting to emerge as an interesting new alternative. Hundreds of studies have used XPS for analyzing the concentration and bonding of dopants in various materials. Although the majority of works has concentrated on nitrogen, important work is still ongoing to identify its precise atomic bonding configurations. In general, care should be taken in the preparation of a suitable sample, consideration of the intrinsic photoemission response of the material in question, and the appropriate spectral analysis. If this is not the case, incorrect conclusions can easily be drawn, especially in the assignment of measured binding energies into specific atomic configurations. Starting from the characteristics of pristine materials, this review provides a practical guide for interpreting X-ray photoelectron spectra of doped graphitic carbon nanomaterials, and a reference for their binding energies that are vital for compositional analysis via XPS.
ACS Nano | 2012
Toma Susi; Jani Kotakoski; Raul Arenal; Simon Kurasch; Hua Jiang; Viera Skakalova; Odile Stéphan; Arkady V. Krasheninnikov; Esko I. Kauppinen; Ute Kaiser; Jannik C. Meyer
By combining ab initio simulations with state-of-the-art electron microscopy and electron energy loss spectroscopy, we study the mechanism of electron beam damage in nitrogen-doped graphene and carbon nanotubes. Our results show that the incorporation of nitrogen atoms results in noticeable knock-on damage in these structures already at an acceleration voltage of 80 kV, at which essentially no damage is created in pristine structures at corresponding doses. Contrary to an early estimate predicting rapid destruction via sputtering of the nitrogen atoms, in the case of substitutional doping, damage is initiated by displacement of carbon atoms neighboring the nitrogen dopant, leading to the conversion of substitutional dopant sites into pyridinic ones. Although such events are relatively rare at 80 kV, they become significant at higher voltages typically used in electron energy loss spectroscopy studies. Correspondingly, we measured an energy loss spectrum time series at 100 kV that provides direct evidence for such conversions in nitrogen-doped single-walled carbon nanotubes, in excellent agreement with our theoretical prediction. Besides providing an improved understanding of the irradiation stability of these structures, we show that structural changes cannot be neglected in their characterization employing high-energy electrons.
Journal of the American Chemical Society | 2011
Zhen Zhu; Hua Jiang; Toma Susi; Albert G. Nasibulin; Esko I. Kauppinen
We demonstrate here a simple and effective (n,m)-selective growth of single-walled carbon nanotubes (SWCNTs) in an aerosol floating catalyst chemical vapor deposition (CVD) process by introducing a certain amount of ammonia (NH(3)). Chiralities of carbon nanotubes produced in the presence of 500 ppm NH(3) at 880 °C are narrowly distributed around the major semiconducting (13,12) nanotube with over 90% of SWCNTs having large chiral angles in the range 20°-30°, and nearly 50% in the range 27°-29°. The developed synthesis process enables chiral-selective growth at high temperature for structurally stable carbon nanotubes with large diameters.
Physical Review Letters | 2014
Toma Susi; Jani Kotakoski; Demie Kepaptsoglou; Clemens Mangler; Tracy C. Lovejoy; Ondrej L. Krivanek; Recep Zan; Ursel Bangert; Paola Ayala; Jannik C. Meyer; Quentin M. Ramasse
We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.
RSC Advances | 2014
Divya Srivastava; Toma Susi; Maryam Borghei; Laasonen Kari
Although nitrogen-doped nanocarbon systems have recently received intense attention, the mechanism for the observed highly efficient oxygen reduction is still under debate. To address this issue, we investigated the adsorption and dissociation of an oxygen molecule on three pristine or nitrogen-doped nanocarbon systems: graphene, single-walled and double-walled carbon nanotubes using density functional theory calculations. The adsorption and dissociation energies were determined for both pristine and N-doped single-walled carbon nanotubes of different diameters with graphitic-like N substitutions in order to see the effect of diameter on oxygen dissociation. It was found that the energy barrier for oxygen dissociation, chemisorption energy and reaction energy are a function of carbon nanotube diameter, but independent of the number of walls. We also investigated the energy barrier of oxygen dissociation on single-walled carbon nanotubes with different types of nitrogen doping (i.e. pyridinic and graphitic). It was observed that higher nitrogen concentrations greatly reduce the energy barrier for graphitic nitrogen. Our results contribute towards a better understanding of the reaction mechanism for nitrogen-doped carbon nanomaterials involving oxygen molecule dissociation in the first step.
Ultramicroscopy | 2017
Toma Susi; Jannik C. Meyer; Jani Kotakoski
Recent advances in scanning transmission electron microscopy (STEM) instrumentation have made it possible to focus electron beams with sub-atomic precision and to identify the chemical structure of materials at the level of individual atoms. Here we discuss the dynamics that are observed in the structure of low-dimensional materials under electron irradiation, and the potential use of electron beams for single-atom manipulation. As a demonstration of the latter capability, we show how momentum transfer from the electrons of a 60-keV Ångström-sized STEM probe can be used to move silicon atoms embedded in the graphene lattice with atomic precision.
Applied Physics Letters | 2015
Kimmo Mustonen; Patrik Laiho; Antti Kaskela; Zhen Zhu; Olivier Reynaud; Nikolay Houbenov; Ying Tian; Toma Susi; Hua Jiang; Albert G. Nasibulin; Esko I. Kauppinen
We present a novel floating catalyst synthesis route for individual, i.e. non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3-4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 microns were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7) and (9,6), with up to 70% of tubes having chiral angles over 20{\deg}. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 {\deg}C, which simultaneously increased the fraction of semiconducting tubes from 67 to 80%. Limiting the nanotube gas phase number concentration to approx. 100 000 per cubic centimetre successfully prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80 % of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ohms/sq. at 90 % transparency for 550 nm light.
Applied Physics Letters | 2015
Kimmo Mustonen; Patrik Laiho; Antti Kaskela; Toma Susi; Albert G. Nasibulin; Esko I. Kauppinen
The ultimate performance—ratio of electrical conductivity to optical absorbance—of single-walled carbon nanotube (SWCNT) transparent conductive films (TCFs) is an issue of considerable application relevance. Here, we present direct experimental evidence that SWCNT bundling is detrimental for their performance. We combine floating catalyst synthesis of non-bundled, high-quality SWCNTs with an aggregation chamber, in which bundles with mean diameters ranging from 1.38 to 2.90 nm are formed from identical 3 μm long SWCNTs. The as-deposited TCFs from 1.38 nm bundles showed sheet resistances of 310 Ω/□ at 90% transparency, while those from larger bundles of 1.80 and 2.90 nm only reached values of 475 and 670 Ω/□, respectively. Based on these observations, we elucidate how networks formed by smaller bundles perform better due to their greater interconnectivity at a given optical density. Finally, we present a semi-empirical model for TCF performance as a function of SWCNT mean length and bundle diameter. This g...
Physical Review B | 2015
Toma Susi; Duncan J. Mowbray; Mathias P. Ljungberg; Paola Ayala
X-ray photoelectron spectroscopy (XPS) combined with first principles modeling is a powerful tool for determining the chemical composition and electronic structure of novel materials. Of these, graphene is an especially important model system for understanding the properties of other carbon nanomaterials. Here, we calculate the carbon 1
Journal of Nanomaterials | 2008
Toma Susi; Albert G. Nasibulin; Hua Jiang; Esko I. Kauppinen
\textit{s}