Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Naumov is active.

Publication


Featured researches published by Andreas Naumov.


Key Engineering Materials | 2014

Influence of the Process Temperature on the Properties of Friction Stir Welded Blanks Made of Mild Steel and Aluminum

Chris Mertin; Andreas Naumov; Linda Mosecker; Markus Bambach; Gerhard Hirt

Hybrid components made of steel and aluminum sheet metal are a promising approach for weight reduction for automotive applications. However, lightweight components made of steel and aluminum require suitable joining technologies, particularly if forming operations follow after the welding process. Friction Stir Welding (FSW) is a promising solid-state welding technology for producing dissimilar joints of steel and aluminum. Within this work dissimilar butt joints were produced using sheet metals of mild steel DC04 and the aluminum alloy AA6016 with a thickness of about 1 mm. The FSW joints show approximately 85 % of the tensile strength of the aluminum base material. In metallographic investigations of the produced FSW blanks it was found that the microstructure in the area of the weld seam changes in the aluminum alloy due to the process temperature and plastic deformation. Due to temperature dependent changes of precipitations of the aluminum alloy, temperature measurements have been carried out during the welding process. To find an explanation of the reduction in tensile strength of the FSW joints, short time heat treatment experiments in the temperature range between 250 °C and 450 °C were performed using the aluminum base material. Heat treatments in the temperature range of the measured process temperature result in a reduction of the tensile strength of about 20 % regardless the annealing time.


Advanced Materials Research | 2013

Properties of Friction Stir Welded Blanks Made from DC04 Mild Steel and Aluminum AA6016

Alexander Göttmann; Chris Mertin; Linda Mosecker; Andreas Naumov; Markus Bambach

Due to increasing demands for lightweight structures in automotive applications the use of sheet metal components made from aluminium alloys is a promising approach for weight reduction. The combination of steel and aluminium in car bodies may be an interesting alternative compared to a monolithic material design. The weight of structural parts of a car body shell can be reduced if dedicated parts consist of aluminium instead of steel. This approach allows for an optimal exploitation of the material properties of both materials, bringing high strength into highly loaded areas while areas subject to lower loads are equipped with lower strength and weight. However, a multi-material design combining steel and aluminium demands for suitable joining methods, especially if a forming operation is applied to the welded sheets. In conventional fusion welding processes the formation of intermetallic phases due to the metallurgical affinity of aluminium and iron is a serious problem. Recent developments in regulated cold metal transfer (CMT) welding technologies at the Institute of Welding Technology and Joining Technology (ISF) at the RWTH Aachen promise an appropriate solution to this problem. Due to a digitally regulated arc technology, the heat input in CMT is reduced to a minimum. However, the inevitable formation of a welding bead in arc processes with filler material is a criterion of exclusion in the case of production of welds for car body shells. To achieve an optimal appearance of the body shell, the welding beads need to be removed from both sides of the sheet in a second manufacturing step. Hence, to avoid further costs, it seems expedient to search for alternative welding technologies. Friction stir welded (FSW) joints show relatively even welding beads. Furthermore, this joining method is characterised by a low process temperature, which is considerably below the melting temperature of the base materials. Hence, FSW is a promising joining technique to produce tailored blanks out of aluminium and steel. The main objective of the present paper is the evaluation of suitable process parameters for the production of FSW butt joints with a thickness of 1 mm made from the aluminium alloy AA6016-T4 and the mild steel DC04. Welding experiments using a varying rotational speed, tool offset, tool velocity, tool plunge depth and tool tilt angle were carried out. To identify the best parameters in terms of the strength of the joint, tensile tests were performed. It is shown, that an amount of approximately 85% of the tensile strength of the base material AA6016 can be achieved. Using SEM the formation of the fracture surfaces was analysed. Different fracture types were identified and the possible reasons for their occurrence are discussed. It is shown that in the case of optimal joining procedure the failure occurs in the thermomechanically affected zone in the aluminium sheet, were the plastic deformation is low. Additionally, thermography has been employed to evaluate the temperature distribution during the process. In metallographic investigations it was found that during welding the microstructure of the aluminium base material changes due to plastic deformation and temperature increase in the area of the weld seam. Using hardness measurements the change of the mechanical properties in the contact zone of both base materials and in the heat affected zone was examined. Finally, an outlook is given with respect to the possibilities of producing FSW welded sheets that can be formed using conventional deep-drawing.


Production Engineering | 2017

On the growth of intermetallic phases by heat treatment of friction stir welded aluminum steel joints

Andreas Naumov; Chris Mertin; Frederik Korte; Gerhard Hirt; Uwe Reisgen

Multi-material components made from aluminum and steel sheet metal are an innovative approach for weight reduction in automotive applications. However, lightweight components made from aluminum and steel require suitable joining technologies. A promising solid-state welding technology for producing dissimilar steel aluminum joints is Friction Stir Welding, which minimizes the formation of Fe-Al intermetallic phases due to process temperatures lower than the melting temperatures of the base material. The results obtained show a comparison of steel aluminum joints made by FSW using DC04 mild steel with the strain hardened aluminum alloy AA5754-H22 on the one hand and the precipitation hardened aluminum alloy AA6082-T6 on the other hand. The difference between achieved maximum tensile strengths of the joints in relation to those from both base materials is investigated. Due to the stirring and heat input of the welding process, the temper condition of the precipitation hardened aluminum alloy is changed. To improve the mechanical properties of the welded joints, post weld heat treatments are performed. The post weld heat treatments of the produced multi-material specimens from AA6082-T6 aluminum alloy and mild steel at various heat treatment conditions show substantial growth of intermetallic phase layer, which is characterized in detail within the present work. Tensile tests show a degradation of the mechanical properties resulting in a decreased tensile strength and insufficient connection of both materials. Investigations using a scanning electron microscope (SEM) show a distinct increase of the thickness of intermetallic phases in the transition between aluminum and steel.


Archive | 2017

Multi-technology Platforms (MTPs)

Christian Brecher; Wolfgang Bleck; Jörg Feldhusen; Gerhard Hirt; Fritz Klocke; Uwe Reisgen; Robert Schmitt; David Bailly; Markus Bambach; Laura Conrads; Frédéric du Bois-Reymond; Alexander Göttmann; Stefan Gräfe; Mohamed Harraz; Jan Erik Heller; Werner Herfs; Krishna Chaitanya Komerla; Marvin Laugwitz; Manuel Löwer; Chris Mertin; Andreas Naumov; Johannes Alexander Nittinger; Martin Peterek; Ulrich Prahl; Jan Rey; Alexander Schiebahn; Alexander Schmid; Roman Ulrich Christopher Schmitz; Stefan Tönissen; Holger Voswinckel

The growing demand for individualized commodities requires new solutions for a highly flexible yet cost-efficient production. Hence, the research results described in this chapter address the question of how different manufacturing technologies could be combined and employed efficiently in industrial practice. Reaching across the whole field of Multi-Technology Platforms (MTPs) a generalized design methodology was examined. The resulting template-based procedure, combining function structure and technology chains, is introduced in the first section. Consecutively, the next section advances this approach by illustrating the incorporation of metrology into machine tools and MTPs. For technological validation, all newly-developed scientific approaches were successfully integrated into four demonstrator test beds located at the RWTH Aachen University: a Multi-Technology Machining Center, a Hybrid Sheet Metal Processing Center, a Conductive Friction Stir Welding Center and a laser-enhanced hybrid lathe. The economic efficiency of manufacturing technology integration is reviewed before a profitability assessment based on the aforementioned demonstrator test beds is performed. The chapter concludes with an outlook on future research topics.


International journal of engineering research and technology | 2014

Feasibility Study on the use of Adhesive Fixation in Conjunction with Friction Stir Welding

Uwe Reisgen; Alexander Schiebahn; Marc Essers; Andreas Naumov; Mohamed Harraz


The International Journal of Advanced Manufacturing Technology | 2018

Investigation of microstructure and mechanical properties of friction stir welded AA6016-T4 and DC04 alloy joints

Krishna Chaitanya Komerla; Andreas Naumov; Chris Mertin; Ulrich Prahl; Wolfgang Bleck


Schweissen und Schneiden | 2017

Technologische Weiterentwicklung des Ruehrreibschweissens durch konduktive Energiezufuhr

Andreas Naumov; Chris Mertin; Uwe Reisgen; Alexander Schiebahn; Erik Zokoll


Schweissen und Schneiden | 2017

Wirtschaftlicheres Rührreibschweißen durch den zusätzlichen Einsatz von Klebtechnik

Andreas Naumov; Uwe Reisgen; Alexander Schiebahn


Archive | 2017

Profitability Assessment as a Contribution to the Theory of Production

Christian Brecher; Johannes Alexander Nittinger; Roman Ulrich Christopher Schmitz; Chris Mertin; Frédéric du Bois-Reymond; Fritz Klocke; Uwe Reisgen; Maximillian Wegener; Gerhard Hirt; Laura Conrads; Andreas Naumov; Stefan Gräfe


Archive | 2017

Demonstrator Conductive Friction Stir Welding (FSW) Center

Gerhard Hirt; Alexander Schiebahn; Alexander Göttmann; Chris Mertin; Ulrich Prahl; Uwe Reisgen; Mohamed Harraz; Krishna Chaitanya Komerla; Wolfgang Bleck; Andreas Naumov; Markus Bambach

Collaboration


Dive into the Andreas Naumov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Reisgen

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Bambach

Brandenburg University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge