Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Nüchter is active.

Publication


Featured researches published by Andreas Nüchter.


Robotics and Autonomous Systems | 2003

An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments

Hartmut Surmann; Andreas Nüchter; Joachim Hertzberg

Digital 3D models of the environment are needed in rescue and inspection robotics, facility managements and architecture. This paper presents an automatic system for gaging and digitalization of 3D indoor environments. It consists of an autonomous mobile robot, a reliable 3D laser range finder and three elaborated software modules. The first module, a fast variant of the Iterative Closest Points algorithm, registers the 3D scans in a common coordinate system and relocalizes the robot. The second module, a next best view planner, computes the next nominal pose based on the acquired 3D data while avoiding complicated obstacles. The third module, a closed-loop and globally stable motor controller, navigates the mobile robot to a nominal pose on the base of odometry and avoids collisions with dynamical obstacles. The 3D laser range finder acquires a 3D scan at this pose. The proposed method allows one to digitalize large indoor environments fast and reliably without any intervention and solves the SLAM problem. The results of two 3D digitalization experiments are presented using a fast octree-based visualization method.


Robotics and Autonomous Systems | 2008

Towards semantic maps for mobile robots

Andreas Nüchter; Joachim Hertzberg

Intelligent autonomous action in ordinary environments calls for maps. 3D geometry is generally required for avoiding collision with complex obstacles and to self-localize in six degrees of freedom (6 DoF) (x, y, z positions, roll, yaw, and pitch angles). Meaning, in addition to geometry, becomes inevitable if the robot is supposed to interact with its environment in a goal-directed way. A semantic stance enables the robot to reason about objects; it helps disambiguate or round off sensor data; and the robot knowledge becomes reviewable and communicable. The paper describes an approach and an integrated robot system for semantic mapping. The prime sensor is a 3D laser scanner. Individual scans are registered into a coherent 3D geometry map by 6D SLAM. Coarse scene features (e.g., walls, floors in a building) are determined by semantic labeling. More delicate objects are then detected by a trained classifier and localized. In the end, the semantic maps can be visualized for human inspection. We sketch the overall architecture of the approach, explain the respective steps and their underlying algorithms, give examples based on a working robot implementation, and discuss the findings.


Journal of Field Robotics | 2007

6D SLAM—3D mapping outdoor environments

Andreas Nüchter; Kai Lingemann; Joachim Hertzberg; Hartmut Surmann

6D SLAM (simultaneous localization and mapping) or 6D concurrent localization and mapping of mobile robots considers six dimensions for the robot pose, namely, the x, y, and z coordinates and the roll, yaw, and pitch angles. Robot motion and localization on natural surfaces, e.g., driving outdoor with a mobile robot, must regard these degrees of freedom. This paper presents a robotic mapping method based on locally consistent 3D laser range scans. Iterative Closest Point scan matching, combined with a heuristic for closed loop detection and a global relaxation method, results in a highly precise mapping system. A new strategy for fast data association, cached kd-tree search, leads to feasible computing times. With no ground-truth data available for outdoor environments, point relations in maps are compared to numerical relations in uncalibrated aerial images in order to assess the metric validity of the resulting 3D maps.


international conference on robotics and automation | 2004

6D SLAM with an application in autonomous mine mapping

Andreas Nüchter; Hartmut Surmann; Kai Lingemann; Joachim Hertzberg; Sebastian Thrun

To create with an autonomous mobile robot a 3D volumetric map of a scene it is necessary to gage several 3D scans and to merge them into one consistent 3D model. This paper provides a new solution to the simultaneous localization and mapping (SLAM) problem with six degrees of freedom. Robot motion on natural surfaces has to cope with yaw, pitch and roll angles, turning pose estimation into a problem in six mathematical dimensions. A fast variant of the Iterative Closest Points algorithm registers the 3D scans in a common coordinate system and relocalizes the robot. Finally, consistent 3D maps are generated using a global relaxation. The algorithms have been tested with 3D scans taken in the Mathies mine, Pittsburgh, PA. Abandoned mines pose significant problems to society, yet a large fraction of them lack accurate 3D maps.


Robotics and Autonomous Systems | 2008

Globally consistent 3D mapping with scan matching

Dorit Borrmann; Jan Elseberg; Kai Lingemann; Andreas Nüchter; Joachim Hertzberg

A globally consistent solution to the simultaneous localization and mapping (SLAM) problem in 2D with three degrees of freedom (DoF) poses was presented by Lu and Milios [F. Lu, E. Milios, Globally consistent range scan alignment for environment mapping, Autonomous Robots 4 (April) (1997) 333-349]. To create maps suitable for natural environments it is however necessary to consider the 6DoF pose case, namely the three Cartesian coordinates and the roll, pitch and yaw angles. This article describes the extension of the proposed algorithm to deal with these additional DoFs and the resulting non-linearities. Simplifications using Taylor expansion and Cholesky decomposition yield a fast application that handles the massive amount of 3D data and the computational requirements due to the 6DoF. Our experiments demonstrate the functionality of estimating the exact poses and their covariances in all 6DoF, leading to a globally consistent map. The correspondences between scans are found automatically by use of a simple distance heuristic.


Robotics and Autonomous Systems | 2005

High-speed laser localization for mobile robots

Kai Lingemann; Andreas Nüchter; Joachim Hertzberg; Hartmut Surmann

This paper describes a novel, laser-based approach for tracking the pose of a high-speed mobile robot. The algorithm is outstanding in terms of accuracy and computation time. The efficiency is achieved by a closed-form solution for the matching of two laser scans, the use of natural scan features and fast linear filters. The implemented algorithm is evaluated with the high-speed robot Kurt3D (4 m/s), and compared to standard scan matching methods in indoor and outdoor environments.


international conference on advanced robotics | 2005

6D SLAM with approximate data association

Andreas Nüchter; Kai Lingemann; Joachim Hertzberg; Hartmut Surmann

This paper provides a new solution to the simultaneous localization and mapping (SLAM) problem with six degrees of freedom. A fast variant of the iterative closest points (ICP) algorithm registers 3D scans taken by a mobile robot into a common coordinate system and thus provides relocalization. Hereby, data association is reduced to the problem of searching for closest points. Approximation algorithms for this searching, namely, approximate kd-trees and box decomposition trees, are presented and evaluated in this paper. A solution to 6D SLAM that considers all free parameters in the robot pose is built based on 3D scan matching


digital identity management | 2007

Cached k-d tree search for ICP algorithms

Andreas Nüchter; Kai Lingemann; Joachim Hertzberg

The ICP (iterative closest point) algorithm is the de facto standard for geometric alignment of three-dimensional models when an initial relative pose estimate is available. The basis of ICP is the search for closest points. Since the development of ICP, k-d trees have been used to accelerate the search. This paper presents a novel search procedure, namely cached k-d trees, exploiting iterative behavior of the ICP algorithm. It results in a significant speedup of about 50% as we show in an evaluation using different data sets.


intelligent robots and systems | 2009

Robust 3D-mapping with time-of-flight cameras

Stefan May; David Droeschel; Stefan Fuchs; Dirk Holz; Andreas Nüchter

Time-of-flight cameras constitute a smart and fast technology for 3D perception but lack in measurement precision and robustness. The authors present a comprehensive approach for 3D environment mapping based on this technology. Imprecision of depth measurements are properly handled by calibration and application of several filters. Robust registration is performed by a novel extension to the Iterative Closest Point algorithm. Remaining registration errors are reduced by global relaxation after loop-closure and surface smoothing. A laboratory ground truth evaluation is provided as well as 3D mapping experiments in a larger indoor environment.


international conference on computer vision systems | 2009

GPU-Accelerated Nearest Neighbor Search for 3D Registration

Deyuan Qiu; Stefan May; Andreas Nüchter

Nearest Neighbor Search (NNS) is employed by many computer vision algorithms. The computational complexity is large and constitutes a challenge for real-time capability. The basic problem is in rapidly processing a huge amount of data, which is often addressed by means of highly sophisticated search methods and parallelism. We show that NNS based vision algorithms like the Iterative Closest Points algorithm (ICP) can achieve real-time capability while preserving compact size and moderate energy consumption as it is needed in robotics and many other domains. The approach exploits the concept of general purpose computation on graphics processing units (GPGPU) and is compared to parallel processing on CPU. We apply this approach to the 3D scan registration problem, for which a speed-up factor of 88 compared to a sequential CPU implementation is reported.

Collaboration


Dive into the Andreas Nüchter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Lingemann

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar

Dorit Borrmann

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Jan Elseberg

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge