Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Plaitakis is active.

Publication


Featured researches published by Andreas Plaitakis.


Journal of Immunology | 2012

Crucial Role of Granulocytic Myeloid-Derived Suppressor Cells in the Regulation of Central Nervous System Autoimmune Disease

Marianna Ioannou; Themis Alissafi; Iakovos Lazaridis; George Deraos; John Matsoukas; Achille Gravanis; Vasileios Mastorodemos; Andreas Plaitakis; Arlene H. Sharpe; Dimitrios T. Boumpas; Panayotis Verginis

There is a need in autoimmune diseases to uncover the mechanisms involved in the natural resolution of inflammation. In this article, we demonstrate that granulocytic myeloid-derived suppressor cells (G-MDSCs) abundantly accumulate within the peripheral lymphoid compartments and target organs of mice with experimental autoimmune encephalomyelitis prior to disease remission. In vivo transfer of G-MDSCs ameliorated experimental autoimmune encephalomyelitis, significantly decreased demyelination, and delayed disease onset through inhibition of encephalitogenic Th1 and Th17 immune responses. Exposure of G-MDSCs to the autoimmune milieu led to up-regulation of the programmed death 1 ligand that was required for the G-MDSC–mediated suppressive function both in vitro and in vivo. Importantly, myeloid-derived suppressor cells were enriched in the periphery of subjects with active multiple sclerosis and suppressed the activation and proliferation of autologous CD4+ T cells ex vivo. Collectively, this study revealed a pivotal role for myeloid-derived suppressor cells in the regulation of multiple sclerosis, which could be exploited for therapeutic purposes.


Laryngoscope | 2005

Benign paroxysmal positional vertigo: 10-year experience in treating 592 patients with canalith repositioning procedure.

Emmanuel P. Prokopakis; Theognosia S. Chimona; Minas Tsagournisakis; Panagiotis Christodoulou; Barry E. Hirsch; Vassilios A. Lachanas; Emmanuel S. Helidonis; Andreas Plaitakis; George A. Velegrakis

Objective: To assess the long‐term efficacy of canalith repositioning procedure (CRP) in the treatment of patients with benign paroxysmal positional vertigo (BPPV).


Neurotoxicity Research | 2012

The Role of Glutamate Dehydrogenase in Mammalian Ammonia Metabolism

Cleanthe Spanaki; Andreas Plaitakis

Glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia. High levels of GDH activity is found in mammalian liver, kidney, brain, and pancreas. In the liver, GDH reaction appears to be close-to-equilibrium, providing the appropriate ratio of ammonia and amino acids for urea synthesis in periportal hepatocytes. In addition, GDH produces glutamate for glutamine synthesis in a small rim of pericentral hepatocytes. Hence, hepatic GDH can be either a source for ammonia or an ammonia scavenger. In the kidney, GDH function produces ammonia from glutamate to control acidosis. In the human, the presence of two differentially regulated isoforms (hGDH1 and hGDH2) suggests a complex role for GDH in ammonia homeostasis. Whereas hGDH1 is sensitive to GTP inhibition, hGDH2 has dissociated its function from GTP control. Furthermore, hGDH2 shows a lower optimal pH than hGDH1. The hGDH2 enzyme is selectively expressed in human astrocytes and Sertoli cells, probably facilitating metabolic recycling processes essential for their supportive role. Here, we report that hGDH2 is also expressed in the epithelial cells lining the convoluted tubules of the renal cortex. As hGDH2 functions more efficiently under acidotic conditions without the operation of the GTP energy switch, its presence in the kidney may increase the efficacy of the organ to maintain acid base equilibrium.


Neurochemistry International | 2011

The human GLUD2 glutamate dehydrogenase and its regulation in health and disease

Andreas Plaitakis; Helen Latsoudis; Cleanthe Spanaki

Whereas glutamate dehydrogenase in most mammals (hGDH1 in the human) is encoded by a single functional GLUD1 gene expressed widely, humans and other primates have acquired through retroposition an X-linked GLUD2 gene that encodes a highly homologous isoenzyme (hGDH2) expressed in testis and brain. Using an antibody specific for hGDH2, we showed that hGDH2 is expressed in testicular Sertoli cells and in cerebral cortical astrocytes. Although hGDH1 and hGDH2 have similar catalytic properties, they differ markedly in their regulatory profile. While hGDH1 is potently inhibited by GTP and may be controlled by the need of the cell for ATP, hGDH2 has dissociated its function from GTP and may metabolize glutamate even when the Krebs cycle generates GTP amounts sufficient to inactivate hGDH1. As astrocytes are known to provide neurons with lactate that largely derives from the Krebs cycle via conversion of glutamate to α-ketoglutarate, the selective expression of hGDH2 may facilitate metabolic recycling processes essential for glutamatergic transmission. As there is evidence for deregulation of glutamate metabolism in degenerative neurologic disorders, we sequenced GLUD1 and GLUD2 genes in neurologic patients and found that a rare T1492G variation in GLUD2 that results in substitution of Ala for Ser445 in the regulatory domain of hGDH2 interacted significantly with Parkinsons disease (PD) onset. Thus, in two independent Greek and one North American PD cohorts, Ser445Ala hemizygous males, but not heterozygous females, developed PD 6-13 years earlier than subjects with other genotypes. The Ala445-hGDH2 variant shows enhanced catalytic activity that is resistant to modulation by GTP, but sensitive to inhibition by estrogens. These observations are thought to suggest that enhanced glutamate oxidation by the Ala445-hGDH2 variant accelerates nigral cell degeneration in hemizygous males and that inhibition of the overactive enzyme by estrogens protects heterozygous females. We then evaluated the interaction of estrogens and neuroleptic agents (haloperidol and perphenazine) with the wild-type hGDH1 and hGDH2 and found that both inhibited hGDH2 more potently than hGDH1 and that the evolutionary Arg443Ser substitution was largely responsible for this sensitivity. Hence, the properties acquired by hGDH2 during its evolution have made the enzyme a selective target for neuroactive steroids and drugs, providing new means for therapeutic interventions in disorders linked to deregulation of this enzyme.


Parkinsonism & Related Disorders | 2009

Haplotype analysis of Lrrk2 R1441H carriers with parkinsonism

Owen A. Ross; Cleanthe Spanaki; Alida Griffith; Chin-Hsien Lin; Jennifer M. Kachergus; Kristoffer Haugarvoll; Helen Latsoudis; Andreas Plaitakis; Joaquim J. Ferreira; Cristina Sampaio; Vincenzo Bonifati; Ruey-Meei Wu; Cyrus P. Zabetian; Matthew J. Farrer

The Roc domain of the Lrrk2 protein harbors two pathogenic mutations which cause autosomal dominant parkinsonism (R1441C and R1441G). A third putatively pathogenic variant (R1441H) has been identified in four probands of diverse ethnicity with parkinsonism. Herein we show that the R1441H substitutions lie on different haplotypes within our patients, confirming this codon as a mutational hotspot. The absence of this variant in control subjects and the presence of two other pathogenic variants at this amino acid position collectively support the contention that R1441H is a pathogenic substitution.


Toxicology and Applied Pharmacology | 2011

A case report of motor neuron disease in a patient showing significant level of DDTs, HCHs and organophosphate metabolites in hair as well as levels of hexane and toluene in blood.

Konstantinos Kanavouras; Manolis Tzatzarakis; Vasileios Mastorodemos; Andreas Plaitakis; Aristidis M. Tsatsakis

Motor neuron disease is a devastating neurodegenerative condition, with the majority of sporadic, non-familial cases being of unknown etiology. Several epidemiological studies have suggested that occupational exposure to chemicals may be associated with disease pathogenesis. We report the case of a patient developing progressive motor neuron disease, who was chronically exposed to pesticides and organic solvents. The patient presented with leg spasticity and developed gradually clinical signs suggestive of amyotrophic lateral sclerosis, which was supported by the neurophysiologic and radiological findings. Our report is an evidence based case of combined exposure to organochlorine (DDTs), organophosphate pesticides (OPs) and organic solvents as confirmed by laboratory analysis in samples of blood and hair confirming systematic exposure. The concentration of non-specific dialkylphosphates metabolites (DAPs) of OPs in hair (dimethyphopshate (DMP) 1289.4 pg/mg and diethylphosphate (DEP) 709.4 pg/mg) and of DDTs (opDDE 484.0 pg/mg, ppDDE 526.6 pg/mg, opDDD 448.4 pg/mg, ppDDD+opDDT 259.9 pg/mg and ppDDT 573.7 pg/mg) were considerably significant. Toluene and n-hexane were also detected in blood on admission at hospital and quantified (1.23 and 0.87 μg/l, respectively), while 3 months after hospitalization blood testing was found negative for toluene and n-hexane and hair analysis was provided decrease levels of HCHs, DDTs and DAPs.


Neurochemical Research | 2014

Heterogeneous Cellular Distribution of Glutamate Dehydrogenase in Brain and in Non-neural Tissues

Cleanthe Spanaki; Dimitra Kotzamani; Zoe Petraki; Elias Drakos; Andreas Plaitakis

Mammalian glutamate dehydrogenase (GDH) is an evolutionarily conserved enzyme central to the metabolism of glutamate, the main excitatory transmitter in mammalian CNS. Its activity is allosterically regulated and thought to be controlled by the need of the cell for ATP. While in most mammals, GDH is encoded by a single GLUD1 gene that is widely expressed (housekeeping; hGDH1 in the human), humans and other primates have acquired via retroposition a GLUD2 gene encoding an hGDH2 isoenzyme with distinct functional properties and tissue expression profile. Whereas hGDH1 shows high levels of expression in the liver, hGDH2 is expressed in human testis, brain and kidney. Recent studies have provided significant insight into the functional adaptation of hGDH2. This includes resistance to GTP control, enhanced sensitivity to inhibition by estrogens and other endogenous allosteric effectors, and ability to function in a relatively acidic environment. While inhibition of hGDH1 by GTP, derived from Krebs cycle, represents the main mechanism by which the flux of glutamate through this pathway is regulated, dissociation of hGDH2 from GTP control may provide a biological advantage by permitting enzyme function independently of this energy switch. Also, the relatively low optimal pH for hGDH2 is suited for transmitter glutamate metabolism, as glutamate uptake by astrocytes leads to significant mitochondrial acidification. Although mammalian GDH is a housekeeping enzyme, its levels of expression vary markedly among the various tissues and among the different types of cells that constitute the same organ. In this paper, we will review existing evidence on the cellular and subcellular distribution of GDH in neural and non-neural tissues of experimental animals and humans, and consider the implications of these findings in biology of these tissues. Special attention is given to accumulating evidence that glutamate flux through the GDH pathway is linked to cell signaling mechanisms that may be tissue-specific.


Neurochemistry International | 2012

Expression of human GLUD2 glutamate dehydrogenase in human tissues: functional implications.

Ioannis Zaganas; Cleanthe Spanaki; Andreas Plaitakis

Glutamate dehydrogenase (GDH), a mitochondrial enzyme with a key metabolic role, exists in the human in hGDH1 and hGDH2 isoforms encoded by the GLUD1 and GLUD2 genes, respectively. It seems that GLUD1 was retroposed to the X chromosome where it gave rise to GLUD2 via random mutations and natural selection. Of these, evolutionary Gly456Ala substitution dissociated hGDH2 from GTP control, while replacement of Arg443 by Ser drastically modified basal activity, heat stability, optimal pH, allosteric regulation and migration pattern in SDS-PAGE, thus suggesting an effect on enzymes conformation. While GLUD2-specific transcripts have been detected in human brain, retina and testis, data on the endogenous hGDH2 protein are lacking. Given the housekeeping nature of hGDH1 and its high homology to hGDH2, the specific detection of hGDH2 in tissues presents a challenge. To develop an antibody specific for hGDH2, we considered that an epitope containing the Arg443Ser change was an attractive target. We accordingly used a peptide that corresponds to residues 436-447, with Ser at position 443, to immunize rabbits and succeeded in raising a polyclonal antibody specific for hGDH2. Western blots showed that human testis contained equal amounts of hGDH2 and hGDH1 and that both isoproteins localized to the mitochondrial fraction. In human brain, however, hGDH2 expression was lower than that of hGDH1. Immuno-histochemical studies on human testis and cerebral cortex, showed punctuate, organelle-like hGDH2 immuno-labeling in sertoli cells and in astrocytes, respectively, consistent with the mitochondrial localization of the enzyme. Similar studies in kidney revealed that hGDH2 is expressed in epithelial cells of the proximal convoluted tubule. As hGDH2 can metabolize glutamate at relatively low pH without the GTP constrain, it may function efficiently under conditions of relative acidification that prevail in astrocytes following glutamate uptake. Similarly, in the kidney, hGDH2 could contribute to enhanced excretion of ammonia under acidosis.


Neurochemistry International | 2009

The human GLUD2 glutamate dehydrogenase: Localization and functional aspects

Ioannis Zaganas; Konstantinos Kanavouras; Vasileios Mastorodemos; Helen Latsoudis; Cleanthe Spanaki; Andreas Plaitakis

In all mammals, glutamate dehydrogenase (GDH), an enzyme central to the metabolism of glutamate, is encoded by a single gene (GLUD1 in humans) which is expressed widely (housekeeping). Humans and other primates also possess a second gene, GLUD2, which encodes a highly homologous GDH isoenzyme (hGDH2) expressed predominantly in retina, brain and testis. There is evidence that GLUD1 was retro-posed <23 million years ago to the X chromosome, where it gave rise to GLUD2 through random mutations and natural selection. These mutations provided the novel enzyme with unique properties thought to facilitate its function in the particular milieu of the nervous system. hGDH2, having been dissociated from GTP control (through the Gly456Ala change), is mainly regulated by rising levels of ADP/l-leucine. To achieve full-range regulation by these activators, hGDH2 needs to set its basal activity at low levels (<10% of full capacity), a property largely conferred by the evolutionary Arg443Ser change. Studies of structure/function relationships have identified residues in the regulatory domain of hGDH2 that modify basal catalytic activity and regulation. In addition, enzyme concentration and buffer ionic strength can influence basal enzyme activity. While mature hGDH1 and hGDH2 isoproteins are highly homologous, their predicted leader peptide sequences show a greater degree of divergence. Study of the subcellular sites targeted by hGDH2 in three different cultured cell lines using a GLUD2/EGFP construct revealed that hGDH2 localizes mainly to mitochondria and to a lesser extent to the endoplasmic reticulum of these cells. The implications of these findings for the potential role of this enzyme in the biology of the nervous system in health and disease are discussed.


Movement Disorders | 2009

Essential tremor in Parkinson's disease kindreds from a population of similar genetic background†

Cleanthe Spanaki; Andreas Plaitakis

To investigate the possible association between essential tremor (ET) and Parkinsons disease (PD) we conducted a prospective clinical and epidemiological study in a population of similar genetic background. The first‐degree relatives of 303 PD probands and 249 controls from Crete were evaluated for the presence of ET. In addition, the possible co‐occurrence of ET and PD in the same family or in the same individual was investigated. Results showed that ET was present in the relatives of PD patients more often than in those of controls (OR:3.64, P < 0.001). The risk was even greater (OR: 4.48) when the affected proband had tremor‐dominant or mixed PD. Female relatives and siblings of PD patients were more likely to have ET than male relatives and parents of PD patients (OR: 4.36 v/s 2.89 and 4.49 v/s 2.74, respectively). Twelve subjects had both ET and PD phenotypes. While this may have occurred by chance, a number of families were identified in which ET and PD were coinherited through the same parental line. Hence, in certain families ET and PD are genetically related probably sharing common hereditary predisposition.

Collaboration


Dive into the Andreas Plaitakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge