Ioannis Zaganas
University of Crete
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ioannis Zaganas.
Journal of Neuroscience Research | 2001
Andreas Plaitakis; Ioannis Zaganas
Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of glutamate to α‐ketoglutarate using NAD or NADP as cofactors. In mammalian brain, GDH is located predominantly in astrocytes, where it is probably involved in the metabolism of transmitter glutamate. The exact mechanisms that regulate glutamate fluxes through this pathway, however, have not been fully understood. In the human, GDH exists in heat‐resistant and heat‐labile isoforms, encoded by the GLUD1 (housekeeping) and GLUD2 (nerve tissue‐specific) genes, respectively. These forms differ in their catalytic and allosteric properties. Kinetic studies showed that the Km value for glutamate for the nerve tissue GDH is within the range of glutamate levels in astrocytes (2.43 mM), whereas for the housekeeping enzyme, this value is significantly higher (7.64 mM; P < 0.01). The allosteric activators ADP (0.1–1.0 mM) and L‐leucine (1.0–10.0 mM) induce a concentration‐dependent enzyme stimulation that is proportionally greater for the nerve tissue‐specific GDH (up to 1,600%) than for the housekeeping enzyme (up to 150%). When used together at lower concentrations, ADP (10–50 mM) and L‐leucine (75–200 μM) act synergistically in stimulating GDH activity. GTP exerts a powerful inhibitory effect (IC50 = 0.20 mM) on the housekeeping GDH; in contrast, the nerve tissue isoenzyme is resistant to GTP inhibition. Thus, although the housekeeping GDH is regulated primarily by GTP, the nerve tissue GDH activity depends largely on available ADP or L‐leucine levels. Conditions associated with enhanced hydrolysis of ATP to ADP (e.g., intense glutamatergic transmission) are likely to activate nerve tissue‐specific GDH leading to an increased glutamate flux through this pathway.
Toxicology | 2013
Ioannis Zaganas; Stefania Kapetanaki; Vassileios Mastorodemos; Konstantinos Kanavouras; Claudio Colosio; Martin F. Wilks; Aristidis M. Tsatsakis
There has been a steep increase in the prevalence of dementia in recent decades, which has roughly followed an increase in pesticide use some decades earlier, a time when it is probable that current dementia patients could have been exposed to pesticides. This raises the question whether pesticides contribute to dementia pathogenesis. Indeed, many studies have found increased prevalence of cognitive, behavioral and psychomotor dysfunction in individuals chronically exposed to pesticides. Furthermore, evidence from recent studies shows a possible association between chronic pesticide exposure and an increased prevalence of dementia, including Alzheimers disease (AD) dementia. At the cellular and molecular level, the mechanism of action of many classes of pesticides suggests that these compounds could be, at least partly, accountable for the neurodegeneration accompanying AD and other dementias. For example, organophosphates, which inhibit acetylcholinesterase as do the drugs used in treating AD symptoms, have also been shown to lead to microtubule derangements and tau hyperphosphorylation, a hallmark of AD. This emerging association is of considerable public health importance, given the increasing dementia prevalence and pesticide use. Here we review the epidemiological links between dementia and pesticide exposure and discuss the possible pathophysiological mechanisms and clinical implications of this association.
Journal of Neuroscience Research | 2005
Vasileios Mastorodemos; Ioannis Zaganas; Cleanthe Spanaki; Maria Bessa; Andreas Plaitakis
Glutamate dehydrogenase (GDH), an enzyme central to glutamate metabolism, is located in the mitochondria although there is evidence for extramitochondrial localization of GDH. In the human, housekeeping and nerve tissue‐specific isoforms, encoded by the GLUD1 and GLUD2 genes, have been identified. The two isoenzymes differ markedly in their baseline activities, allosteric regulation, and thermal stability. GTP potently inhibits GLUD1‐derived GDH (IC50 = 0.2 μM), whereas the GLUD2‐derived isoenzyme is resistant to this compound. The GLUD2‐derived GDH shows low basal activity and has the capacity to be activated fully by ADP or L‐leucine. We used molecular biological tools to study the subcellular localization of GLUD1‐derived GDH in cultured cells and the molecular basis of its regulation. COS7 cells, transfected with a GLUD1‐pEGFP‐N3 vector, revealed a GFP fluorescence pattern nearly identical to that of the mitochondrial marker pDsRed2‐Mito. Site‐directed mutagenesis of GLUD1 gene showed that replacement of Gly456 by Ala made the enzyme resistant to GTP (IC50 = 2.8 ± 0.15 μM) without altering its regulation by ADP. Substitution of Ser for Arg443 rendered the enzyme virtually inactive at its basal state, but fully responsive to ADP activation. The Arg443Ser mutant was more active at pH 7.0 than at pH 8.0. The Gly456Ala change therefore dissociated GLUD2‐derived GDH function from GTP, whereas the Arg443Ser change made enzyme regulation possible without this inhibitor. These properties may allow the brain isoenzyme to function well under conditions of intracellular acidification and increased turnover of ATP to ADP, as occurs in synaptic astrocytes during excitatory transmission.
Journal of Neuroscience Research | 2001
Ioannis Zaganas; Helle S. Waagepetersen; Panagiotis Georgopoulos; Ursula Sonnewald; Andreas Plaitakis; Arne Schousboe
Glutamate dehydrogenase (GDH) specific activities, kinetic properties and allosteric regulation were studied in extracts from cultured neurons and astrocytes prepared from mouse cerebral cortex and cerebellum. Considerable differences were observed in the specific activity of the enzyme among the different cell types with astrocytes expressing the highest GDH activity. This may reflect the functional importance of these cells in glutamate uptake and metabolism. Among the neurons, the glutamatergic cerebellar granule cells showed a GDH specific activity that was 60% higher (P < 0.01) than that of the GABAergic cerebral cortical neurons. Also, the Km for ammonia was 1.7‐fold higher in the cortical neurons than in the other cell types. These findings may reflect a particular need for the glutamatergic granule cells to synthesize glutamate via the GDH pathway. No differences were observed among the different cell types with regard to the allosteric properties of GDH expressed by these cells.
Neurochemistry International | 2003
Andreas Plaitakis; Cleanthe Spanaki; Vasilis Mastorodemos; Ioannis Zaganas
In mammalian brain, glutamate dehydrogenase (GDH) is located predominantly in astrocytes, where is thought to play a role in transmitter glutamates metabolism. Human GDH exists in GLUD1 (housekeeping) and GLUD2 (nerve tissue-specific) isoforms, which share all but 15 out of their 505 amino acids. The GLUD1 GDH is potently inhibited by GTP, whereas the GLUD2 enzyme is resistant to this compound. On the other hand, the GLUD2 isoform assumes in the absence of GTP a conformational state associated with little catalytic activity, but it remains amenable to full activation by ADP and/or L-leucine. Site-directed mutagenesis of the GLUD1 gene at sites that differ from the corresponding residues of the GLUD2 gene showed that replacement of Gly456 by Ala made the enzyme resistant to GTP (IC(50)=2.8+/-0.15 microM) compared to the wild-type GDH (IC(50)=0.19+/-0.01 microM). In addition, substitution of Ser for Arg443 virtually abolished basal activity and rendered the enzyme dependent on ADP for its function. These properties may permit the neural enzyme to be recruited under conditions of low energy charge (high ADP:ATP ratio), similar to those that prevail in synaptic astrocytes during intense glutamatergic transmission. Hence, substitution of Ser for Arg443 and Ala for Gly456 are the main evolutionary changes that led to the adaptation of the GLUD2 GDH to the unique metabolic needs of the nerve tissue.
Journal of Biological Chemistry | 2010
Cleanthe Spanaki; Ioannis Zaganas; Kleopas A. Kleopa; Andreas Plaitakis
Mammalian glutamate dehydrogenase (GDH) is an allosterically regulated enzyme that is expressed widely. Its activity is potently inhibited by GTP and thought to be controlled by the need of the cell for ATP. In addition to this housekeeping human (h) GDH1, humans have acquired (via a duplication event) a highly homologous isoenzyme (hGDH2) that is resistant to GTP. Although transcripts of GLUD2, the gene encoding hGDH2, have been detected in human neural and testicular tissues, data on the endogenous protein are lacking. Here, we developed an antibody specific for hGDH2 and used it to study human tissues. Western blot analyses revealed, to our surprise, that endogenous hGDH2 is more densely expressed in testis than in brain. At the subcellular level, hGDH2 localized to mitochondria. Study of testicular tissue using immunocytochemical and immunofluorescence methods revealed that the Sertoli cells were strongly labeled by our anti-hGDH2 antibody. In human cerebral cortex, a robust labeling of astrocytes was detected, with neurons showing faint hGDH2 immunoreactivity. Astrocytes and Sertoli cells are known to support neurons and germ cells, respectively, providing them with lactate that largely derives from the tricarboxylic acid cycle via conversion of glutamate to α-ketoglutarate (GDH reaction). As hGDH2 is not subject to GTP control, the enzyme is able to metabolize glutamate even when the tricarboxylic acid cycle generates GTP amounts sufficient to inactivate the housekeeping hGDH1 protein. Hence, the selective expression of hGDH2 by astrocytes and Sertoli cells may provide a significant biological advantage by facilitating metabolic recycling processes essential to the supportive role of these cells.
European Journal of Human Genetics | 2010
Andreas Plaitakis; Helen Latsoudis; Konstantinos Kanavouras; Beate Ritz; Jeff M. Bronstein; Irene Skoula; Vasileios Mastorodemos; Spyridon Papapetropoulos; Nikolas Borompokas; Ioannis Zaganas; Georgia Xiromerisiou; G. M. Hadjigeorgiou; Cleanthe Spanaki
Parkinsons disease (PD), a common neurodegenerative disorder characterized by progressive loss of dopaminergic neurons and their terminations in the basal ganglia, is thought to be related to genetic and environmental factors. Although the pathophysiology of PD neurodegeneration remains unclear, protein misfolding, mitochondrial abnormalities, glutamate dysfunction and/or oxidative stress have been implicated. In this study, we report that a rare T1492G variant in GLUD2, an X-linked gene encoding a glutamate dehydrogenase (a mitochondrial enzyme central to glutamate metabolism) that is expressed in brain (hGDH2), interacted significantly with age at PD onset in Caucasian populations. Individuals hemizygous for this GLUD2 coding change that results in substitution of Ala for Ser445 in the regulatory domain of hGDH2 developed PD 6–13 years earlier than did subjects with other genotypes in two independent Greek PD groups and one North American PD cohort. However, this effect was not present in female PD patients who were heterozygous for the DNA change. The variant enzyme, obtained by substitution of Ala for Ser445, showed an enhanced basal activity that was resistant to GTP inhibition but markedly sensitive to modification by estrogens. Thus, a gain-of-function rare polymorphism in hGDH2 hastens the onset of PD in hemizygous subjects, probably by damaging nigral cells through enhanced glutamate oxidative dehydrogenation. The lack of effect in female heterozygous PD patients could be related to a modification of the overactive variant enzyme by estrogens.
Journal of Biological Chemistry | 2009
Jindong Xu; Claudia M. Litterst; Anastasios Georgakopoulos; Ioannis Zaganas; Nikolaos K. Robakis
Presenilin 1, a protein involved in the development of familial Alzheimer disease, is an important functional component of the γ-secretase complex that processes many cell surface receptors including the EphB2 tyrosine kinase receptors (Litterst, C., Georgakopoulos, A., Shioi, J., Ghersi, E., Wisniewski, T., Wang, R., Ludwig, A., and Robakis, N. K. (2007) J. Biol. Chem. 282, 16155–16163). Recent evidence reveals that cytosolic peptides produced by the combined metalloproteinase/γ-secretase processing of cell surface proteins function in signal transduction and protein phosphorylation. Here we show that peptide EphB2/CTF2 released to the cytosol by the γ-secretase processing of EphB2 receptor, has tyrosine kinase activity, and directly phosphorylates the N-methyl-d-aspartate receptor (NMDAR) subunits in both cell lines and primary neuronal cultures. This phosphorylation occurs in the absence of Src kinases and is resistant to Src inhibitors revealing a novel pathway of NMDAR tyrosine phosphorylation independent of Src activity. EphB2/CTF2, but not a kinase-deficient mutant of EphB2/CTF2, promotes the cell surface expression of NMDAR. Because NMDAR plays central roles in synaptic plasticity and function, our results provide a potential link between the γ-secretase function of presenilin 1 and learning and memory.
Neurochemistry International | 2012
Ioannis Zaganas; Cleanthe Spanaki; Andreas Plaitakis
Glutamate dehydrogenase (GDH), a mitochondrial enzyme with a key metabolic role, exists in the human in hGDH1 and hGDH2 isoforms encoded by the GLUD1 and GLUD2 genes, respectively. It seems that GLUD1 was retroposed to the X chromosome where it gave rise to GLUD2 via random mutations and natural selection. Of these, evolutionary Gly456Ala substitution dissociated hGDH2 from GTP control, while replacement of Arg443 by Ser drastically modified basal activity, heat stability, optimal pH, allosteric regulation and migration pattern in SDS-PAGE, thus suggesting an effect on enzymes conformation. While GLUD2-specific transcripts have been detected in human brain, retina and testis, data on the endogenous hGDH2 protein are lacking. Given the housekeeping nature of hGDH1 and its high homology to hGDH2, the specific detection of hGDH2 in tissues presents a challenge. To develop an antibody specific for hGDH2, we considered that an epitope containing the Arg443Ser change was an attractive target. We accordingly used a peptide that corresponds to residues 436-447, with Ser at position 443, to immunize rabbits and succeeded in raising a polyclonal antibody specific for hGDH2. Western blots showed that human testis contained equal amounts of hGDH2 and hGDH1 and that both isoproteins localized to the mitochondrial fraction. In human brain, however, hGDH2 expression was lower than that of hGDH1. Immuno-histochemical studies on human testis and cerebral cortex, showed punctuate, organelle-like hGDH2 immuno-labeling in sertoli cells and in astrocytes, respectively, consistent with the mitochondrial localization of the enzyme. Similar studies in kidney revealed that hGDH2 is expressed in epithelial cells of the proximal convoluted tubule. As hGDH2 can metabolize glutamate at relatively low pH without the GTP constrain, it may function efficiently under conditions of relative acidification that prevail in astrocytes following glutamate uptake. Similarly, in the kidney, hGDH2 could contribute to enhanced excretion of ammonia under acidosis.
Neurochemistry International | 2009
Ioannis Zaganas; Konstantinos Kanavouras; Vasileios Mastorodemos; Helen Latsoudis; Cleanthe Spanaki; Andreas Plaitakis
In all mammals, glutamate dehydrogenase (GDH), an enzyme central to the metabolism of glutamate, is encoded by a single gene (GLUD1 in humans) which is expressed widely (housekeeping). Humans and other primates also possess a second gene, GLUD2, which encodes a highly homologous GDH isoenzyme (hGDH2) expressed predominantly in retina, brain and testis. There is evidence that GLUD1 was retro-posed <23 million years ago to the X chromosome, where it gave rise to GLUD2 through random mutations and natural selection. These mutations provided the novel enzyme with unique properties thought to facilitate its function in the particular milieu of the nervous system. hGDH2, having been dissociated from GTP control (through the Gly456Ala change), is mainly regulated by rising levels of ADP/l-leucine. To achieve full-range regulation by these activators, hGDH2 needs to set its basal activity at low levels (<10% of full capacity), a property largely conferred by the evolutionary Arg443Ser change. Studies of structure/function relationships have identified residues in the regulatory domain of hGDH2 that modify basal catalytic activity and regulation. In addition, enzyme concentration and buffer ionic strength can influence basal enzyme activity. While mature hGDH1 and hGDH2 isoproteins are highly homologous, their predicted leader peptide sequences show a greater degree of divergence. Study of the subcellular sites targeted by hGDH2 in three different cultured cell lines using a GLUD2/EGFP construct revealed that hGDH2 localizes mainly to mitochondria and to a lesser extent to the endoplasmic reticulum of these cells. The implications of these findings for the potential role of this enzyme in the biology of the nervous system in health and disease are discussed.