Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Scholl is active.

Publication


Featured researches published by Andreas Scholl.


Nature Materials | 2008

Electric-field control of local ferromagnetism using a magnetoelectric multiferroic.

Ying-Hao Chu; Lane W. Martin; Mikel Holcomb; Martin Gajek; Shu-Jen Han; Qing He; Nina Balke; Chan-Ho Yang; D. W. Lee; Wei Hu; Q. Zhan; Pei Ling Yang; Arantxa Fraile-Rodriguez; Andreas Scholl; Shan X. Wang; R. Ramesh

Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO(3). The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO(3) film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co(0.9)Fe(0.1)) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.


Nature | 2000

Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins

Frithjof Nolting; Andreas Scholl; J. Stöhr; Jin Won Seo; Jean Fompeyrine; Heinz Siegwart; Jean-Pierre Locquet; Simon Anders; J. Lüning; Eric E. Fullerton; Michael F. Toney; Michael R. Scheinfein; Howard A. Padmore

The arrangement of spins at interfaces in a layered magnetic material often has an important effect on the properties of the material. One example of this is the directional coupling between the spins in an antiferromagnet and those in an adjacent ferromagnet, an effect first discovered in 1956 and referred to as exchange bias. Because of its technological importance for the development of advanced devices such as magnetic read heads and magnetic memory cells, this phenomenon has received much attention. Despite extensive studies, however, exchange bias is still poorly understood, largely due to the lack of techniques capable of providing detailed information about the arrangement of magnetic moments near interfaces. Here we present polarization-dependent X-ray magnetic dichroism spectro-microscopy that reveals the micromagnetic structure on both sides of a ferromagnetic–antiferromagnetic interface. Images of thin ferromagnetic Co films grown on antiferromagnetic LaFeO3 show a direct link between the arrangement of spins in each material. Remanent hysteresis loops, recorded for individual ferromagnetic domains, show a local exchange bias. Our results imply that the alignment of the ferromagnetic spins is determined, domain by domain, by the spin directions in the underlying antiferromagnetic layer.


Journal of the American Chemical Society | 2009

Mechanism of calcite co-orientation in the sea urchin tooth.

Christopher E. Killian; Rebecca A. Metzler; Yutao Gong; Ian C. Olson; Joanna Aizenberg; Yael Politi; Fred H. Wilt; Andreas Scholl; Anthony Young; Andrew Doran; Martin Kunz; Nobumichi Tamura; S. N. Coppersmith; P. U. P. A. Gilbert

Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO(3)) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin ( Strongylocentrotus purpuratus ), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction (muXRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO(3) is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.


Review of Scientific Instruments | 1999

Photoemission electron microscope for the study of magnetic materials

Simone Anders; Howard A. Padmore; Robert M. Duarte; Timothy R. Renner; Thomas Stammler; Andreas Scholl; M. R. Scheinfein; J. Stöhr; Laurent Séve; B. Sinkovic

The design of a high resolution photoemission electron microscope (PEEM) for the study of magnetic materials is described. PEEM is based on imaging the photoemitted (secondary) electrons from a sample irradiated by x rays. This microscope is permanently installed at the Advanced Light Source at a bending magnet that delivers linearly polarized, and left and right circularly polarized radiation in the soft x-ray range. The microscope can utilize several contrast mechanisms to study the surface and subsurface properties of materials. A wide range of contrast mechanisms can be utilized with this instrument to form topographical, elemental, chemical, magnetic circular and linear dichroism, and polarization contrast high resolution images. The electron optical properties of the microscope are described, and some first results are presented.


Nature Communications | 2011

Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics

Qing He; Ying-Hao Chu; John Heron; Sui Yang; Wen-I Liang; Chang-Yang Kuo; Hong Ji Lin; Pu Yu; Chen Wei Liang; R. J. Zeches; Wei-Cheng Kuo; J. Y. Juang; Chien Te Chen; Elke Arenholz; Andreas Scholl; R. Ramesh

Magnetoelectrics and multiferroics present exciting opportunities for electric-field control of magnetism. However, there are few room-temperature ferromagnetic-ferroelectrics. Among the various types of multiferroics the bismuth ferrite system has received much attention primarily because both the ferroelectric and the antiferromagnetic orders are quite robust at room temperature. Here we demonstrate the emergence of an enhanced spontaneous magnetization in a strain-driven rhombohedral and super-tetragonal mixed phase of BiFeO₃. Using X-ray magnetic circular dichroism-based photoemission electron microscopy coupled with macroscopic magnetic measurements, we find that the spontaneous magnetization of the rhombohedral phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent tetragonal-like phase and the epitaxial constraint. Reversible electric-field control and manipulation of this magnetic moment at room temperature is also shown.


Journal of the American Chemical Society | 2008

Gradual Ordering in Red Abalone Nacre

P. U. P. A. Gilbert; Rebecca A. Metzler; Dong Zhou; Andreas Scholl; Andrew Doran; Anthony Young; Martin Kunz; Nobumichi Tamura; S. N. Coppersmith

Red abalone (Haliotis rufescens) nacre is a layered composite biomineral that contains crystalline aragonite tablets confined by organic layers. Nacre is intensely studied because its biologically controlled microarchitecture gives rise to remarkable strength and toughness, but the mechanisms leading to its formation are not well understood. Here we present synchrotron spectromicroscopy experiments revealing that stacks of aragonite tablet crystals in nacre are misoriented with respect to each other. Quantitative measurements of crystal orientation, tablet size, and tablet stacking direction show that orientational ordering occurs not abruptly but gradually over a distance of 50 microm. Several lines of evidence indicate that different crystal orientations imply different tablet growth rates during nacre formation. A theoretical model based on kinetic and gradual selection of the fastest growth rates produces results in qualitative and quantitative agreement with the experimental data and therefore demonstrates that ordering in nacre is a result of crystal growth kinetics and competition either in addition or to the exclusion of templation by acidic proteins as previously assumed. As in other natural evolving kinetic systems, selection of the fastest-growing stacks of tablets occurs gradually in space and time. These results suggest that the self-ordering of the mineral phase, which may occur completely independently of biological or organic-molecule control, is fundamental in nacre formation.


Journal of Chemical Physics | 2004

Line shapes and satellites in high-resolution x-ray photoelectron spectra of large π-conjugated organic molecules

Andreas Scholl; Y. Zou; M. Jung; Th. Schmidt; R. Fink; E. Umbach

We present a high-resolution C1s and O1 s x-ray photoemission (XPS) study for condensed films of pi-conjugated organic molecules, namely, of the anhydrides 3,4,9,10-perylene-tetracarboxylic acid dianhydride, 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride, 1,8-naphthalene dicarboxylic acid anhydride, and benzoperylene-(1,8)-dicarboxylic acid anhydride as well as the quinoic acenaphthenequinone. Although the functional groups are identical for the anhydrides, the molecules show very different photoemission fine structure thus providing a detailed fingerprint. A simultaneous peak fit analysis of the XPS spectra of all molecules allows to consistently determine the ionization potentials of all chemically different carbon and oxygen atoms. Additional structures in the C1s and O1s spectra are interpreted as shakeup satellites and assigned with the help of singles and doubles configuration interaction calculations. These satellites provide further information on multielectron excitations and must be taken into account for quantitative investigations.


Nature | 2016

Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic

Julia A. Mundy; Charles M. Brooks; Megan E. Holtz; Jarrett A. Moyer; Hena Das; Alejandro F. Rebola; John Heron; James D. Clarkson; Steven M. Disseler; Zhiqi Liu; Alan Farhan; Rainer Held; Robert Hovden; Elliot Padgett; Qingyun Mao; Hanjong Paik; Rajiv Misra; Lena F. Kourkoutis; Elke Arenholz; Andreas Scholl; J. A. Borchers; William Ratcliff; R. Ramesh; Craig J. Fennie; P. Schiffer; David A. Muller; Darrell G. Schlom

Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.


Nature Nanotechnology | 2014

Thermal fluctuations in artificial spin ice

Vassilios Kapaklis; Unnar B. Arnalds; Alan Farhan; Rajesh V. Chopdekar; Ana Balan; Andreas Scholl; L. J. Heyderman; Björgvin Hjörvarsson

Artificial spin ice systems have been proposed as a playground for the study of monopole-like magnetic excitations, similar to those observed in pyrochlore spin ice materials. Currents of magnetic monopole excitations have been observed, demonstrating the possibility for the realization of magnetic-charge-based circuitry. Artificial spin ice systems that support thermal fluctuations can serve as an ideal setting for observing dynamical effects such as monopole propagation and as a potential medium for magnetricity investigations. Here, we report on the transition from a frozen to a dynamic state in artificial spin ice with a square lattice. Magnetic imaging is used to determine the magnetic state of the islands in thermal equilibrium. The temperature-induced onset of magnetic fluctuations and excitation populations are shown to depend on the lattice spacing and related interaction strength between islands. The excitations are described by Boltzmann distributions with their factors in the frozen state relating to the blocking temperatures of the array. Our results provide insight into the design of thermal artificial spin ice arrays where the magnetic charge density and response to external fields can be studied in thermal equilibrium.


Nanotechnology | 2009

Structural and chemical characterization of TiO2 memristive devices by spatially-resolved NEXAFS

John Paul Strachan; Jianhua Yang; Ruth Münstermann; Andreas Scholl; Gilberto Medeiros-Ribeiro; Duncan Stewart; R. Stanley Williams

We used spatially-resolved NEXAFS (near-edge x-ray absorption fine structure) spectroscopy coupled with microscopy to characterize the electronic, structural and chemical properties of bipolar resistive switching devices. Metal/TiO2/metal devices were electroformed with both bias polarities and then physically opened to study the resulting material changes within the device. Soft x-ray absorption techniques allowed isolated study of the different materials present in the device with 100 nm spatial resolution. The resulting morphology and structural changes reveal a picture of localized polarity-independent heating occurring within these devices initiated by and subsequently accelerating polarity-dependent electrochemical reduction/oxidation processes.

Collaboration


Dive into the Andreas Scholl's collaboration.

Top Co-Authors

Avatar

Andrew Doran

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Elke Arenholz

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Z. Q. Qiu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Young

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard A. Padmore

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yayoi Takamura

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge