Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Schropp is active.

Publication


Featured researches published by Andreas Schropp.


Applied Physics Letters | 2010

Hard x-ray nanobeam characterization by coherent diffraction microscopy

Andreas Schropp; Pit Boye; J. M. Feldkamp; Robert Hoppe; Jens Patommel; Dirk Samberg; Sandra Stephan; K. Giewekemeyer; R. N. Wilke; Tim Salditt; J. Gulden; Adrian P. Mancuso; I. A. Vartanyants; E. Weckert; Sebastian Schöder; Manfred Burghammer; C. G. Schroer

We have carried out a ptychographic scanning coherent diffraction imaging experiment on a test object in order to characterize the hard x-ray nanobeam in a scanning x-ray microscope. In addition to a high resolution image of the test object, a detailed quantitative picture of the complex wave field in the nanofocus is obtained with high spatial resolution and dynamic range. Both are the result of high statistics due to the large number of diffraction patterns. The method yields a complete description of the focus, is robust against inaccuracies in sample positioning, and requires no particular shape or prior knowledge of the test object.


Applied Physics Letters | 2012

Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes

Andreas Schropp; Robert Hoppe; Jens Patommel; Dirk Samberg; Frank Seiboth; Sandra Stephan; G. Wellenreuther; Gerald Falkenberg; Christian G. Schroer

We demonstrate x-ray scanning coherent diffraction microscopy (ptychography) with 10 nm spatial resolution, clearly exceeding the resolution limits of conventional hard x-ray microscopy. The spatial resolution in a ptychogram is shown to depend on the shape (structure factor) of a feature and can vary for different features in the object. In addition, the resolution and contrast are shown to increase with increasing coherent fluence. For an optimal ptychographic x-ray microscope, this implies a source with highest possible brilliance and an x-ray optic with a large numerical aperture to generate the optimal probe beam.


Scientific Reports | 2013

Full spatial characterization of a nanofocused x-ray free-electron laser beam by ptychographic imaging

Andreas Schropp; Robert Hoppe; Vivienne Meier; Jens Patommel; Frank Seiboth; Hae Ja Lee; B. Nagler; E. Galtier; Brice Arnold; U. Zastrau; Jerome Hastings; Daniel Nilsson; Fredrik Uhlén; Ulrich Vogt; Hans M. Hertz; Christian G. Schroer

The emergence of hard X-ray free electron lasers (XFELs) enables new insights into many fields of science. These new sources provide short, highly intense, and coherent X-ray pulses. In a variety of scientific applications these pulses need to be strongly focused. In this article, we demonstrate focusing of hard X-ray FEL pulses to 125 nm using refractive x-ray optics. For a quantitative analysis of most experiments, the wave field or at least the intensity distribution illuminating the sample is needed. We report on the full characterization of a nanofocused XFEL beam by ptychographic imaging, giving access to the complex wave field in the nanofocus. From these data, we obtain the full caustic of the beam, identify the aberrations of the optic, and determine the wave field for individual pulses. This information is for example crucial for high-resolution imaging, creating matter in extreme conditions, and nonlinear x-ray optics.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2010

Hard X-ray nanoprobe at beamline P06 at PETRA III

Christian G. Schroer; Pit Boye; J. M. Feldkamp; Jens Patommel; Dirk Samberg; Andreas Schropp; Andreas Schwab; Sandra Stephan; Gerald Falkenberg; Gerd Wellenreuther; Nadja Reimers

We describe the hard X-ray scanning microscope planned for the new synchrotron radiation source PETRA III at DESY in Hamburg, Germany. It is based on nanofocusing refractive X-ray lenses and is designed for two-dimensional mapping and scanning tomography. It supports X-ray fluorescence and (coherent) diffraction contrast, yielding elemental and structural information from inside the sample. Spatial resolutions down to well below 50 nm are aimed for in direct space. A further increase in spatial resolution is expected by applying ptychographic scanning schemes. The optical scheme with a two-stage focusing optic is described.


Optics Express | 2011

Full optical characterization of coherent x-ray nanobeams by ptychographic imaging.

Susanne Hönig; Robert Hoppe; Jens Patommel; Andreas Schropp; Sandra Stephan; Sebastian Schöder; Manfred Burghammer; Christian G. Schroer

Scanning coherent diffraction microscopy (ptychography) is an emerging hard x-ray microscopy technique that yields spatial resolutions well below the lateral size of the probing nanobeam. Besides a high resolution image of the object, the complex wave field of the probe can be reconstructed at the position of the object. By verifying the consistency of several independent wave field measurements along the optical axis, we address the question of how well the reconstruction represents the nanobeam. With a single ptychogram the wave field can be properly determined over a large range along the optical axis, also at positions inaccessible otherwise.


Journal of Microscopy | 2011

Non‐destructive and quantitative imaging of a nano‐structured microchip by ptychographic hard X‐ray scanning microscopy

Andreas Schropp; Pit Boye; A. Goldschmidt; Susanne Hönig; Robert Hoppe; Jens Patommel; C. Rakete; Dirk Samberg; Sandra Stephan; Sebastian Schöder; Manfred Burghammer; Christian G. Schroer

We used hard X‐ray scanning microscopy with ptychographic coherent diffraction contrast to image a front‐end processed passivated microchip fabricated in 80 nm technology. No sample preparation was needed to image buried interconnects and contact layers with a spatial resolution of slightly better than 40 nm. The phase shift in the sample is obtained quantitatively. With the additional knowledge of the elemental composition determined in parallel by X‐ray fluorescence mapping, quantitative information about specific nanostructures is obtained. A significant enhancement in signal‐to‐noise ratio and spatial resolution is achieved compared to conventional hard X‐ray scanning microscopy.


Journal of Synchrotron Radiation | 2015

The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

B. Nagler; Brice Arnold; Gary Bouchard; Richard F. Boyce; Richard M. Boyce; Alice Callen; Marc Campell; Ruben Curiel; E. Galtier; Justin Garofoli; Eduardo Granados; J. B. Hastings; G. Hays; Philip A. Heimann; Richard W. Lee; Despina Milathianaki; Lori Plummer; Andreas Schropp; Alex Wallace; Marc Welch; William E. White; Zhou Xing; Jing Yin; James Young; U. Zastrau; Hae Ja Lee

A description of the Matter in Extreme Conditions instrument at the Linac Coherent Light Source is given. Recent scientific highlights illustrate phase-contrast imaging of shock waves, X-ray Thomson scattering and X-ray diffraction of shocked materials.


Scientific Reports | 2015

Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL

Andreas Schropp; Robert Hoppe; Vivienne Meier; Jens Patommel; Frank Seiboth; Y. Ping; D. G. Hicks; Martha Beckwith; G. W. Collins; Andrew Higginbotham; J. S. Wark; Hae Ja Lee; B. Nagler; E. Galtier; Brice Arnold; U. Zastrau; Jerome Hastings; Christian G. Schroer

The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.


Nature Communications | 2017

Perfect X-ray focusing via fitting corrective glasses to aberrated optics

Frank Seiboth; Andreas Schropp; Maria Scholz; Felix Wittwer; Christian Rödel; Martin Wünsche; Tobias Ullsperger; Stefan Nolte; Jussi Rahomäki; Karolis Parfeniukas; Stylianos Giakoumidis; Ulrich Vogt; Ulrich H. Wagner; Christoph Rau; Ulrike Boesenberg; Jan Garrevoet; Gerald Falkenberg; E. Galtier; Hae Ja Lee; B. Nagler; Christian G. Schroer

Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by todays technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.


New Journal of Physics | 2010

Dose requirements for resolving a given feature in an object by coherent x-ray diffraction imaging

Andreas Schropp; Christian G. Schroer

We address the question of what dose is required to image an object by coherent x-ray diffraction imaging (CXDI) and to resolve a certain sub-unit or feature of that object. We show that a necessary condition for being able to resolve the detail is that the feature can be imaged by itself. The quality of the reconstruction of the feature is nearly independent of the surrounding, whether it is embedded in a larger object or not. This allows one to easily estimate the dose requirements for identifying atoms and clusters in larger objects. We illustrate the result by a numerical example and give an estimate for the dose required to resolve single atoms of different elemental species in CXDI experiments at free-electron laser and synchrotron radiation sources.

Collaboration


Dive into the Andreas Schropp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Nagler

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. Galtier

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jens Patommel

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hae Ja Lee

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Frank Seiboth

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Hoppe

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Brice Arnold

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

U. Zastrau

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge