Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Schwaighofer is active.

Publication


Featured researches published by Andreas Schwaighofer.


Analytical Chemistry | 2015

External-Cavity Quantum Cascade Laser Spectroscopy for Mid-IR Transmission Measurements of Proteins in Aqueous Solution

Mirta R. Alcaráz; Andreas Schwaighofer; Christian Kristament; Georg Ramer; Markus Brandstetter; Héctor C. Goicoechea; Bernhard Lendl

In this work, we report mid-IR transmission measurements of the protein amide I band in aqueous solution at large optical paths. A tunable external-cavity quantum cascade laser (EC-QCL) operated in pulsed mode at room temperature allowed one to apply a path length of up to 38 μm, which is four times larger than that applicable with conventional FT-IR spectrometers. To minimize temperature-induced variations caused by background absorption of the ν2-vibration of water (HOH-bending) overlapping with the amide I region, a highly stable temperature control unit with relative temperature stability within 0.005 °C was developed. An advanced data processing protocol was established to overcome fluctuations in the fine structure of the emission curve that are inherent to the employed EC-QCL due to its mechanical instabilities. To allow for wavenumber accuracy, a spectral calibration method has been elaborated to reference the acquired IR spectra to the absolute positions of the water vapor absorption bands. Employing this setup, characteristic spectral features of five well-studied proteins exhibiting different secondary structures could be measured at concentrations as low as 2.5 mg mL(-1). This concentration range could previously only be accessed by IR measurements in D2O. Mathematical evaluation of the spectral overlap and comparison of second derivative spectra confirm excellent agreement of the QCL transmission measurements with protein spectra acquired by FT-IR spectroscopy. This proves the potential of the applied setup to monitor secondary structure changes of proteins in aqueous solution at extended optical path lengths, which allow experiments in flow through configuration.


Scientific Reports | 2016

External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations

Andreas Schwaighofer; Mirta R. Alcaráz; Can Araman; Héctor C. Goicoechea; Bernhard Lendl

Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml−1), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml−1). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml−1 in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml−1 was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.


European Biophysics Journal | 2014

Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements

Andreas Schwaighofer; Caroline Kotlowski; Can Araman; Nam Ky Chu; Rosa Mastrogiacomo; Christian F. W. Becker; Paolo Pelosi; Wolfgang Knoll; Melanie Larisika; Christoph Nowak

In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.


Biochemical and Biophysical Research Communications | 2014

Insights into structural features determining odorant affinities to honey bee odorant binding protein 14

Andreas Schwaighofer; Maria Pechlaner; Chris Oostenbrink; Caroline Kotlowski; Can Araman; Rosa Mastrogiacomo; Paolo Pelosi; Wolfgang Knoll; Christoph Nowak; Melanie Larisika

Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant.


Applied Spectroscopy | 2017

On the Identification of Rayon/Viscose as a Major Fraction of Microplastics in the Marine Environment: Discrimination between Natural and Man-made Cellulosic Fibers by Fourier Transform Infrared Spectroscopy

Ionela Raluca Comnea-Stancu; Karin Wieland; Georg Ramer; Andreas Schwaighofer; Bernhard Lendl

This work was sparked by the reported identification of man-made cellulosic fibers (rayon/viscose) in the marine environment as a major fraction of plastic litter by Fourier transform infrared (FT-IR) transmission spectroscopy and library search. To assess the plausibility of such findings, both natural and man-made fibers were examined using FT-IR spectroscopy. Spectra acquired by transmission microscopy, attenuated total reflection (ATR) microscopy, and ATR spectroscopy were compared. Library search was employed and results show significant differences in the identification rate depending on the acquisition method of the spectra. Careful selection of search parameters and the choice of spectra acquisition method were found to be essential for optimization of the library search results. When using transmission spectra of fibers and ATR libraries it was not possible to differentiate between man-made and natural fibers. Successful differentiation of natural and man-made cellulosic fibers has been achieved for FT-IR spectra acquired by ATR microscopy and ATR spectroscopy, and application of ATR libraries. As an alternative, chemometric methods such as unsupervised hierarchical cluster analysis, principal component analysis, and partial least squares-discriminant analysis were employed to facilitate identification based on intrinsic relationships of sample spectra and successful discrimination of the fiber type could be achieved. Differences in the ATR spectra depending on the internal reflection element (Ge versus diamond) were observed as expected; however, these did not impair correct classification by chemometric analysis. Moreover, the effects of different levels of humidity on the IR spectra of natural and man-made fibers were investigated, too. It has been found that drying and re-humidification leads to intensity changes of absorption bands of the carbohydrate backbone, but does not impair the identification of the fiber type by library search or cluster analysis.


Biomacromolecules | 2014

Structural Proteins from Whelk Egg Capsule with Long Range Elasticity Associated with a Solid-state Phase Transition

S. Scott Wasko; Gavin Z. Tay; Andreas Schwaighofer; Christoph Nowak; J. Herbert Waite; Ali Miserez

The robust, proteinaceous egg capsules of marine prosobranch gastropods (genus Busycotypus ) exhibit unique biomechanical properties such as high elastic strain recovery and elastic energy dissipation capability. Capsule material possesses long-range extensibility that is fully recoverable and is the result of a secondary structure phase transition from α-helical coiled-coil to extended β-sheet rather than of entropic (rubber) elasticity. We report here the characterization of the precursor proteins that make up this material. Three different proteins have been purified and analyzed, and complete protein sequences deduced from messenger ribonucleic acid (mRNA) transcripts. Circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy indicate that the proteins are strongly α-helical in solution and primary sequence analysis suggests that these proteins have a propensity to form coiled-coils. This is in agreement with previous wide-angle X-ray scattering (WAXS) and solid-state Raman spectroscopic analysis of mature egg capsules.


Biophysical Journal | 2013

Time-Resolved Surface-Enhanced IR-Absorption Spectroscopy of Direct Electron Transfer to Cytochrome c Oxidase from R. sphaeroides

Andreas Schwaighofer; Christoph Steininger; David M. Hildenbrandt; Johannes Srajer; Christoph Nowak; Wolfgang Knoll; Renate Naumann

Time-resolved surface-enhanced IR-absorption spectroscopy triggered by electrochemical modulation has been performed on cytochrome c oxidase from Rhodobacter sphaeroides. Single bands isolated from a broad band in the amide I region using phase-sensitive detection were attributed to different redox centers. Their absorbances changing on the millisecond timescale could be fitted to a model based on protonation-dependent chemical reaction kinetics established previously. Substantial conformational changes of secondary structures coupled to redox transitions were revealed.


Analytical Chemistry | 2015

Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine.

Georg Ramer; Anna Balbekova; Andreas Schwaighofer; Bernhard Lendl

We report time-resolved photothermal infrared nanoscopy measurements across a spectral range of more than 100 cm(-1) (1565 cm(-1) to 1729 cm(-1)) at nanoscale spatial resolution. This is achieved through a custom-built system using broadly tunable external cavity quantum cascade lasers in combination with a commercially available atomic force microscope. The new system is applied to the analysis of conformational changes of a polypeptide (poly-l-lysine) film upon temperature-induced changes of the humidity in the film. Changes of the secondary structure from β-sheet to α-helix could be monitored at a time resolution of 15 s per spectrum. The time-resolved spectra are well comparable to reference measurements acquired with conventional Fourier transform infrared microscopy.


Applied Spectroscopy | 2014

Phase-sensitive detection in modulation excitation spectroscopy applied to potential induced electron transfer in cytochrome c oxidase

Andreas Schwaighofer; Shelagh Ferguson-Miller; Renate Naumann; Wolfgang Knoll; Christoph Nowak

Cytochrome c oxidase (CcO) from Rhodobacter sphaeroides was investigated by modulated excitation surface-enhanced infrared-absorption spectroscopy (SEIRAS). Sequential electron transfer (ET) within CcO was initiated by electrochemical excitation. During modulated excitation by periodic potential pulses with frequencies between 20 and 500 Hz, time-resolved infrared spectra were measured by the step-scan technique, with time resolution in the millisecond range. Conformational changes of the protein structure as a result of ET lead to rather complex SEIRA spectra with many overlapping bands embedded in a broad background signal. Phase-sensitive detection (PSD) was used to separate single components within the broad band of overlapping structural bands in the amide I region. PSD is able to extract the periodic response of single components with the same frequency as the excitation from noise or from static background and therefore enhances the signal-to-noise ratio. Moreover, PSD enables validation of the fit model used for the deconvolution of overlapping bands by analyzing phase lags of single components acquired at different stimulation frequencies. Phase lags between the evaluated vibrational components and the modulated excitation increase with increasing excitation frequencies, an inherent prerequisite of this evaluation method.


Applied Microbiology and Biotechnology | 2018

Teaching an old pET new tricks: tuning of inclusion body formation and properties by a mixed feed system in E. coli

David J. Wurm; Julian Quehenberger; Julia Mildner; Britta Eggenreich; Christoph Slouka; Andreas Schwaighofer; Karin Wieland; Bernhard Lendl; Vignesh Rajamanickam; Christoph Herwig; Oliver Spadiut

Against the outdated belief that inclusion bodies (IBs) in Escherichia coli are only inactive aggregates of misfolded protein, and thus should be avoided during recombinant protein production, numerous biopharmaceutically important proteins are currently produced as IBs. To obtain correctly folded, soluble product, IBs have to be processed, namely, harvested, solubilized, and refolded. Several years ago, it was discovered that, depending on cultivation conditions and protein properties, IBs contain partially correctly folded protein structures, which makes IB processing more efficient. Here, we present a method of tailored induction of recombinant protein production in E. coli by a mixed feed system using glucose and lactose and its impact on IB formation. Our method allows tuning of IB amount, IB size, size distribution, and purity, which does not only facilitate IB processing, but is also crucial for potential direct applications of IBs as nanomaterials and biomaterials in regenerative medicine.

Collaboration


Dive into the Andreas Schwaighofer's collaboration.

Top Co-Authors

Avatar

Bernhard Lendl

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christoph Nowak

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Renate Naumann

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Knoll

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Johannes Srajer

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mirta R. Alcaráz

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Georg Ramer

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Kristament

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Héctor C. Goicoechea

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Asmorom Kibrom

Austrian Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge