Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Tue Ingemann Jensen is active.

Publication


Featured researches published by Andreas Tue Ingemann Jensen.


Biomacromolecules | 2014

Positron Emission Tomography Based Analysis of Long-Circulating Cross-Linked Triblock Polymeric Micelles in a U87MG Mouse Xenograft Model and Comparison of DOTA and CB-TE2A as Chelators of Copper-64

Andreas Tue Ingemann Jensen; Tina Binderup; Pramod Kumar Ek; Andreas Kjær; Palle Rasmussen; Thomas Lars Andresen

Copolymers of ABC-type (PEG-PHEMA-PCMA) architecture were prepared by atom transfer radical polymerization and formulated as micelles with functionalizable primary alcohols in the shell-region (PHEMA-block) to which the metal-ion chelators DOTA or CB-TE2A were conjugated. Using this micelle system we compared the in vivo stabilities of DOTA and CB-TE2A as chelators of (64)Cu in micelle nanoparticles. The coumarin polymer (PCMA-block) micelle core was cross-linked by UV irradiation at 2 W/cm(2) for 30 min. The cross-linked micelles were labeled with (64)Cu at room temperature for 2 h (DOTA) or 80 °C for 3 h (CB-TE2A), giving labeling efficiencies of 60-76% (DOTA) and 40-47% (CB-TE2A). (64)Cu-micelles were injected into tumor-bearing mice (8 mg/kg) and PET/CT scans were carried out at 1, 22, and 46 h postinjection. The micelles showed good blood stability (T1/2: 20-26 h) and tumor uptake that was comparable with other nanoparticle systems. The DOTA micelles showed a biodistribution similar to the CB-TE2A micelles and the tumor uptake was comparable for both micelle types at 1 h (1.9% ID/g) and 22 h (3.9% ID/g) but diverged at 46 h with 3.6% ID/g (DOTA) and 4.9% ID/g (CB-TE2A). On the basis of our data, we conclude that cross-linked PEG-PHEMA-PCMA micelles have long circulating properties resulting in tumor accumulation and that DOTA and CB-TE2A (64)Cu-chelates show similar in vivo stability for the studied micelle system.


Chemistry: A European Journal | 2011

Homogeneous Nucleophilic Radiofluorination and Fluorination with Phosphazene Hydrofluorides

Bente Mathiessen; Andreas Tue Ingemann Jensen; Fedor Zhuravlev

A series of phosphazenium hydrofluorides, P(1)(tBu)·[(18/19)F]HF, P(1)(tOct)·[(18/19)F]HF, P(2)(Et)·[(18/19)F]HF, and P(4)(tBu)·[(18/19)F]HF, was synthesized. The radioactive phosphazenium [(18)F]hydrofluorides were obtained by the one-step formation and trapping of gaseous [(18)F]HF with the respective phosphazene bases. The [(19)F] isotopomers were prepared from the corresponding phosphazene bases and Et(3)N·3HF. Under the design of experiment (DoE)-optimized conditions, P(2)(Et)·HF and P(4)(tBu)·HF fluorinated alkyl chlorides, bromides, and pseudohalides in 76-98% yield, but gave lower yields with iodides and electron-deficient arenes. DoE models showed that fluorination can be performed in glass vessels, and that the reactivity of P(2)(Et)·HF and P(4)(tBu)·HF is dominated by solvent polarity but is insensitive to water to at least 2 equiv. In contrast, P(1)(tBu)·HF and P(1)(tOct)·HF were unstable towards autofluorolysis. DFT calculations were performed to rationalize this finding in terms of diminished steric bulk, higher Parrs electrophilicity, and chemical hardness of P(1)(R)H(+). The corresponding radiofluorination reaction gave no valid DoE model but displayed similar substrate scope. High specific activity and excellent radiochemical yields with various pseudohalides (81-91%) suggest that the proposed radiofluorination methodology can complement the current [(18)F]KF/Kryptofix methods, particularly in the areas for which nonpolar reaction conditions are required.


Journal of Liposome Research | 2012

PET imaging of liposomes labeled with an [18F]-fluorocholesteryl ether probe prepared by automated radiosynthesis

Andreas Tue Ingemann Jensen; Tina Binderup; Thomas Lars Andresen; Andreas Kjær; Palle Rasmussen

A novel [18F]-labeled cholesteryl ether lipid probe was prepared by synthesis of the corresponding mesylate, which was [18F]-fluorinated by a [18F]KF, Kryptofix-222, K2CO3 procedure. Fluorination was done for 10 minutes at 165°C and took place with conversion between 3 and 17%, depending on conditions. Radiolabelling of the probe and subsequent in situ purification on SEP-Paks were done on a custom-built, fully automatic synthesis robot. Long-circulating liposomes were prepared by hydration (magnetic stirring) of a lipid film containing the radiolabeled probe, followed by fully automated extrusion through 100-nm filters. The [18F]-labeled liposomes were injected into nude, tumor-bearing mice, and positron emission tomography (PET) scans were performed several times over 8 hours to investigate the in vivo biodistribution. Clear tumor accumulation, as well as hepatic and splenic uptake, was observed, corresponding to expected liposomal pharmacokinetics. The tumor accumulation 8 hours postinjection accounted for 2.25 ± 0.23 (mean ± standard error of the mean) percent of injected dose per gram (%ID/g), and the tumor-to-muscle ratio reached 2.20 ± 0.24 after 8 hours, which is satisfactorily high for visualization of pathological lesions. Moreover, the blood concentration was still at a high level (13.9 ± 1.5 %ID/g) at the end of the 8-hour time frame. The present work demonstrates the methodology for automated preparation of radiolabeled liposomes, and shows that [18F]-labeled liposomes could be suitable as a methodology for visualization of tumors and obtaining short-term pharmacokinetics in vivo.


Nuclear Medicine and Biology | 2015

The impact of weakly bound 89Zr on preclinical studies: Non-specific accumulation in solid tumors and aspergillus infection

Gregory Severin; Jesper Jørgensen; Stefan Wiehr; Anna-Maria Rolle; Anders Elias Hansen; Andreas Maurer; Mike Hasenberg; Bernd J. Pichler; Andreas Kjær; Andreas Tue Ingemann Jensen

UNLABELLED Preclinical studies involving (89)Zr often report significant bone accumulation, which is associated with dissociation of the radiometal from the tracer. However, experiments determining the uptake of unbound (89)Zr in disease models are not performed as routine controls. The purpose of the present study was to investigate the impact of free or weakly bound (89)Zr on PET quantifications in disease models, in order to determine if such control experiments are warranted. METHODS Chemical studies were carried out to find a (89)Zr compound that would solubilize the (89)Zr as a weak chelate, thus mimicking free or weakly bound (89)Zr released in circulation. (89)Zr oxalate had the desired characteristics, and was injected into mice bearing FaDu and HT29 solid tumor xenografts, and mice infected in the lungs with the mold Aspergillus fumigatus, as well as in healthy controls (naïve). PET/CT or PET/MR imaging followed to quantify the distribution of the radionuclide in the disease models. RESULTS (89)Zr oxalate was found to have a plasma half-life of 5.1 ± 2.3 h, accumulating mainly in the bones of all animals. Both tumor types accumulated (89)Zr on the order of 2-4 %ID/cm(3), which is comparable to EPR-mediated accumulation of certain species. In the aspergillosis model, the concentration of (89)Zr in lung tissue of the naïve animals was 6.0 ± 1.1 %ID/g. This was significantly different from that of the animals with advanced disease, showing 11.6 ± 1.8 %ID/g. CONCLUSIONS Given the high levels of (89)Zr accumulation in the disease sites in the present study, we recommend control experiments mapping the biodistribution of free (89)Zr in any preclinical study employing (89)Zr where bone uptake is observed. Aqueous (89)Zr oxalate appears to be a suitable compound for such studies. This is especially relevant in studies where the tracer accumulation is based upon passive targeting, such as EPR.


Applied Radiation and Isotopes | 2017

Optimized procedures for manganese-52: Production, separation and radiolabeling

Jesper Fonslet; Sabrina Tietze; Andreas Tue Ingemann Jensen; Stephen A. Graves; Gregory Severin

Pressed chromium-powder cyclotron targets were irradiated with 16MeV protons, producing 52Mn with average yields of 6.2±0.8MBq/µAh. Separation by solid-phase anion exchange from ethanol-HCl mixtures recovered 94.3±1.7% of 52Mn and reduced the chromium content by a factor of 2.2±0.4×105. An additional AG 1-X8 column was used to remove copper, iron, cobalt and zinc impurities from the prepared 52Mn in 8M HCl. The macrocyclic chelator DOTA was rapidly radiolabeled with 52Mn in aq. ammonium acetate (pH 7.5R.T.) with a radiochemical yield >99% within 1min and was stable for >2 days in bovine serum. The improved separation and purification methodology facilitates the use of 52Mn in basic science and preclinical investigations.


Journal of Medicinal Chemistry | 2015

Bringing Radiotracing to Titanium-Based Antineoplastics: Solid Phase Radiosynthesis, PET and ex Vivo Evaluation of Antitumor Agent [45Ti](salan)Ti(dipic)

Gregory Severin; Carsten H. Nielsen; Andreas Tue Ingemann Jensen; Jesper Fonslet; Andreas Kjær; Fedor Zhuravlev

We present a novel solid-phase based (45)Ti radiolabeling methodology and the implementation of (45)Ti-PET in titanium-based antineoplastics using the showcase compound [(45)Ti](salan)Ti(dipic). This development is intended to allow elucidation of the biodistribution and pharmacokinetics of promising new Ti-based therapeutics.


Molecular and Cellular Neuroscience | 2016

Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers

Maria Hersom; Hans Christian Cederberg Helms; Natasia Pretzer; Charlotte Goldeman; Andreas Tue Ingemann Jensen; Gregory Severin; Morten Nielsen; René Holm; Birger Brodin

Receptor-mediated transcytosis of the transferrin receptor has been suggested as a potential transport system to deliver therapeutic molecules into the brain. Recent studies have however shown that therapeutic antibodies, which have been reported to cross the brain endothelium, reach greater brain exposure when the affinity of the antibodies to the transferrin receptor is lowered. The lower affinity of the antibodies to the transferrin receptor facilitates the dissociation from the receptor within the endosomal compartments, which may indicate that the receptor itself does not necessarily move across the endothelial cells by transcytosis. The aim of the present study was to investigate transferrin receptor expression and role in transendothelial transferrin transport in cultured bovine brain endothelial cell monolayers. Transferrin receptor mRNA and protein levels were investigated in endothelial mono-cultures and co-cultures with astrocytes, as well as in freshly isolated brain capillaries using qPCR, immunocytochemistry and Western blotting. Transendothelial transport and luminal association of holo-transferrin was investigated using [125I]holo-transferrin or [59Fe]-transferrin. Transferrin receptor mRNA expression in all cell culture configurations was lower than in freshly isolated capillaries, but the expression slightly increased during six days of culture. The mRNA expression levels were similar in mono-cultures and co-cultures. Immunostaining demonstrated comparable transferrin receptor localization patterns in mono-cultures and co-cultures. The endothelial cells demonstrated an up-regulation of transferrin receptor mRNA after treatment with the iron chelator deferoxamine. The association of [125I]holo-transferrin and [59Fe]-transferrin to the endothelial cells was inhibited by an excess of unlabeled holo-transferrin, indicating receptor mediated association. However, over time the cell associated [59Fe]-label exceeded that of [125I]holo-transferrin, which could indicate release of iron in the endothelial cells and receptor recycling. Luminal-to-abluminal transport of [125I]holo-transferrin across endothelial cell monolayers was low and not inhibited by unlabeled holo-transferrin. This indicated that transendothelial transferrin transport was independent of transferrin receptor-mediated transcytosis.


Journal of Controlled Release | 2018

Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging

Andreas Tue Ingemann Jensen; Gregory Severin; Anders Elias Hansen; Frederikke P. Fliedner; Rasmus Eliasen; Ladan Parhamifar; Andreas Kjær; Thomas Lars Andresen; Jonas Rosager Henriksen

Abstract Liposomes are nanoparticles used in drug delivery that distribute over several days in humans and larger animals. Radiolabeling with long‐lived positron emission tomography (PET) radionuclides, such as manganese‐52 (52Mn, T½ = 5.6 days), allow the imaging of this biodistribution. We report optimized protocols for radiolabeling liposomes with 52Mn, through both remote‐loading and surface labeling. For comparison, liposomes were also remote‐loaded and surface labeled with copper‐64 (64Cu, T½ = 12.7 h) through conventional means. The chelator DOTA was used in all cases. The in vivo stability of radiometal chelates is widely debated but studies that mimic a realistic in vivo setting are lacking. Therefore, we employed these four radiolabeled liposome types as platforms to demonstrate a new concept for such in vivo evaluation, here of the chelates 52Mn‐DOTA and 64Cu‐DOTA. This was done by comparing “shielded” remote‐loaded with “exposed” surface labeled variants in a CT26 tumor‐bearing mouse model. Remote loading (90 min at 55 °C) and surface labeling (55 °C for 2 h) of 52Mn gave excellent radiolabeling efficiencies of 97–100% and 98–100% respectively, and the liposome biodistribution was imaged by PET for up to 8 days. Liposomes with surface‐conjugated 52Mn‐DOTA exhibited a significantly shorter plasma half‐life (T½ = 14.4 h) when compared to the remote‐loaded counterpart (T½ = 21.3 h), whereas surface‐conjugated 64Cu‐DOTA cleared only slightly faster and non‐significantly, when compared to remote‐loaded (17.2 ± 2.9 h versus 20.3 ± 1.2 h). From our data, we conclude the successful remote‐loading of liposomes with 52Mn, and furthermore that 52Mn‐DOTA may be unstable in vivo whereas 64Cu‐DOTA appears suitable for quantitative imaging. Graphical abstract Figure. No Caption available.


Journal of Labelled Compounds and Radiopharmaceuticals | 2017

PET imaging with copper‐64 as a tool for real‐time in vivo investigations of the necessity for cross‐linking of polymeric micelles in nanomedicine

Andreas Tue Ingemann Jensen; Tina Binderup; Pramod Kumar Ek; Constance E Grandjean; Palle Rasmussen; Andreas Kjær; Thomas Lars Andresen

Polymeric micelles in nanomedicine are often cross-linked to prevent disintegration in vivo. This typically requires clinically problematic chemicals or laborious procedures. In addition, cross-linking may interfere with advanced release strategies. Despite this, it is often not investigated whether cross-linking is necessary for efficient drug delivery. We used positron emission tomography (PET) imaging with 64 Cu to demonstrate general methodology for real-time in vivo investigations of micelle stability. Triblock copolymers with 4-methylcoumarin cores of ABC-type (PEG-PHEMA-PCMA) were functionalized in the handle region (PHEMA) with CB-TE2A chelators. Polymeric micelles were formed by dialysis and one half was core cross-linked (CL) by UV light and the other half was not (nonCL). Both CL and nonCL were radiolabeled with 64 Cu and compared in vivo in tumor-bearing mice, with free 64 Cu as control. Accumulation in relevant organs was quantified by region of interest analysis on PET images and ex vivo counting. It was observed that CL and nonCL showed limited differences in biodistribution from each other, whereas both differed markedly from control (free 64 Cu). This demonstrated that 4-methylcoumarin core micelles may form micelles that are stable in circulation even without cross-linking. The methodology presented here where individual unimers are radiolabeled is applicable to a wide range of polymeric micelle types.


Journal of Labelled Compounds and Radiopharmaceuticals | 2016

Stable and high-yielding intrinsic 59Fe-radiolabeling of the intravenous iron preparations Monofer and Cosmofer

Andreas Tue Ingemann Jensen; Gregory Severin; Hans B. Andreasen; Palle Rasmussen

Commercial iron supplements Monofer(®) and Cosmofer(®) were intrinsically radiolabeled with (59) Fe for the purpose of tracing iron absorption in vivo. Optimized procedures aimed at introducing (59) Fe into the macromolecular construct in a form that was as chemically equivalent to the matrix iron as possible. This was determined by challenging the labeled constructs with diethylenetriaminepentaacetic acid (DTPA) followed by separation by size-exclusion and measurements of radioactivity and iron in the eluted fractions. The final procedures were simple and involved heating aqueous dispersions of the supplements in the presence of [(59) Fe]FeCl3 for 24 h at 95 °C for Monofer, and 85 °C for Cosmofer, resulting in radiochemical yields greater than 94%. High performance size exclusion chromatography, UV-VIS spectroscopy, and dynamic light scattering were used to show that the supplements remained unchanged after radiolabeling, underscoring the applicability of the methodology for radiolabeling commercial iron preparations.

Collaboration


Dive into the Andreas Tue Ingemann Jensen's collaboration.

Top Co-Authors

Avatar

Gregory Severin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Andreas Kjær

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Thomas Lars Andresen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Palle Rasmussen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Anders Elias Hansen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jesper Fonslet

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fedor Zhuravlev

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Tina Binderup

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Anders Floor Frellsen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge