Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Lars Andresen is active.

Publication


Featured researches published by Thomas Lars Andresen.


Annual Review of Pharmacology and Toxicology | 2012

Factors Controlling Nanoparticle Pharmacokinetics: An Integrated Analysis and Perspective

Seyed Moein Moghimi; A.C. Hunter; Thomas Lars Andresen

Intravenously injected nanoparticulate drug carriers provide a wide range of unique opportunities for site-specific targeting of therapeutic agents to many areas within the vasculature and beyond. Pharmacokinetics and biodistribution of these carriers are controlled by a complex array of interrelated core and interfacial physicochemical and biological factors. Pertinent to realizing therapeutic goals, definitive maps that establish the interdependency of nanoparticle size, shape, and surface characteristics in relation to interfacial forces, biodistribution, controlled drug release, excretion, and adverse effects must be outlined. These concepts are critically evaluated and an integrated perspective is provided on the basis of the recent application of nanoscience approaches to nanocarrier design and engineering. The future of this exciting field is bright; some regulatory-approved products are already on the market and many are in late-phase clinical trials. With concomitant advances in extensive computational knowledge of the genomics and epigenomics of interindividual variations in drug responses, the boundaries toward development of personalized nanomedicines can be pushed further.


Journal of Controlled Release | 2010

Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: The challenges ahead

Seyed Moien Moghimi; Alina Joukainen Andersen; S. H. Hashemi; Barbara Lettiero; Davoud Ahmadvand; A.C. Hunter; Thomas Lars Andresen; Islam Hamad; Janos Szebeni

Since their introduction, poly(ethylene glycol)-phospholipid (PEG-PL) conjugates have found many applications in design and engineering of nanosized delivery systems for controlled delivery of pharmaceuticals especially to non-macrophage targets. However, there are reports of idiosyncratic reactions to certain PEG-PL engineered nanomedicines in both experimental animals and man. These reactions are classified as pseudoallergy and may be associated with cardiopulmonary disturbance and other related symptoms of anaphylaxis. Recent studies suggest that complement activation may be a contributing, but not a rate limiting factor, in eliciting hypersensitivity reactions to such nanomedicines in sensitive individuals. This is rather surprising since PEGylated structures are generally assumed to suppress protein adsorption and blood opsonization events including complement. Here, we examine the molecular basis of complement activation by PEG-PL engineered nanomedicines and carbon nanotubes and discuss the challenges ahead.


ACS Nano | 2011

Evaluating Nanoparticle Sensor Design for Intracellular pH Measurements

Rikke Vicki Benjaminsen; Honghao Sun; Jonas Rosager Henriksen; Nynne Meyn Christensen; Kristoffer Almdal; Thomas Lars Andresen

Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.


Biochimica et Biophysica Acta | 2003

Secreted phospholipase A2 as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue

Jesper Davidsen; Kent Jørgensen; Thomas Lars Andresen; Ole G. Mouritsen

Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A(2) (PLA(2)) at the diseased target tissue. The secretory PLA(2) hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA(2) only at the diseased target sites, such as inflamed or cancerous tissue.


Molecular Membrane Biology | 2010

Enzyme-triggered nanomedicine: Drug release strategies in cancer therapy (Invited Review)

Thomas Lars Andresen; David H. Thompson; Thomas Kaasgaard

Abstract Nanomedicine as a field has emerged from the early success of nanoparticle-based drug delivery systems, in particular for treatment of cancer, and the advances made in nano- and biotechnology over the past decade. A prerequisite for nanoparticle-based drug delivery systems to be effective is that the drug payload is released at the target site. A large number of drug release strategies have been proposed that can be classified into certain areas. The simplest and most successful strategy so far, probably due to relative simplicity, is based on utilizing certain physico-chemical characteristics of drugs to obtain a slow drug leakage from the formulations after accumulation in the cancerous site. However, this strategy is only applicable to a relatively small range of drugs and cannot be applied to biologicals. Many advanced drug release strategies have therefore been investigated. Such strategies include utilization of heat, light and ultrasound sensitive systems and in particular pH sensitive systems where the lower pH in endosomes induces drug release. Highly interesting are enzyme sensitive systems where over-expressed disease-associated enzymes are utilized to trigger drug release. The enzyme-based strategies are particularly interesting as they require no prior knowledge of the tumour localization. The basis of this review is an evaluation of the current status of drug delivery strategies focused on triggered drug release by disease-associated enzymes. We limit ourselves to reviewing the liposome field, but the concepts and conclusions are equally important for polymer-based systems.


Advanced Drug Delivery Reviews | 2012

Liposome imaging agents in personalized medicine

Anncatrine Luisa Petersen; Anders Elias Hansen; Alberto Gabizon; Thomas Lars Andresen

In recent years the importance of molecular and diagnostic imaging has increased dramatically in the treatment planning of many diseases and in particular in cancer therapy. Within nanomedicine there are particularly interesting possibilities for combining imaging and therapy. Engineered liposomes that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and has been an important tool in the development of liposomal drugs. However, advanced imaging systems now provide new possibilities for non-invasive monitoring of liposome biodistribution in humans. Thus, advances in imaging and developments in liposome radiolabeling techniques allow us to enter a new arena where we start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the development of radiolabeled liposomes for imaging as a tool in personalized medicine.


ACS Nano | 2013

Single-Walled Carbon Nanotube Surface Control of Complement Recognition and Activation

Alina Joukainen Andersen; Joshua T. Robinson; Hongjie Dai; A. Christy Hunter; Thomas Lars Andresen; S. Moein Moghimi

Carbon nanotubes (CNTs) are receiving considerable attention in site-specific drug and nucleic acid delivery, photodynamic therapy, and photoacoustic molecular imaging. Despite these advances, nanotubes may activate the complement system (an integral part of innate immunity), which can induce clinically significant anaphylaxis. We demonstrate that single-walled CNTs coated with human serum albumin activate the complement system through C1q-mediated classical and the alternative pathways. Surface coating with methoxypoly(ethylene glycol)-based amphiphiles, which confers solubility and prolongs circulation profiles of CNTs, activates the complement system differently, depending on the amphiphile structure. CNTs with linear poly(ethylene glycol) amphiphiles trigger the lectin pathway of the complement through both L-ficolin and mannan-binding lectin recognition. The lectin pathway activation, however, did not trigger the amplification loop of the alternative pathway. An amphiphile with branched poly(ethylene glycol) architecture also activated the lectin pathway but only through L-ficolin recognition. Importantly, this mode of activation neither generated anaphylatoxins nor induced triggering of the effector arm of the complement system. These observations provide a major step toward nanomaterial surface modification with polymers that have the properties to significantly improve innate immunocompatibility by limiting the formation of complement C3 and C5 convertases.


Expert Opinion on Drug Delivery | 2010

LIPOSOMAL CANCER THERAPY: EXPLOITING TUMOR CHARACTERISTICS

Thomas Kaasgaard; Thomas Lars Andresen

Importance of the field: More than 10 million people worldwide are diagnosed with cancer each year, and the development of effective cancer treatments is consequently of great significance. Cancer therapy is unfortunately hampered by severe dose-limiting side effects that reduce the efficacy of cancer treatments. In the search for more effective cancer treatments, nanoparticle-based drug delivery systems, such as liposomes, that are capable of delivering their drug payload selectively to cancer cells are among the most promising approaches. Areas covered in this review: This review provides an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What the reader will gain: The review focuses on strategies that exploit characteristic features of solid tumors, such as abnormal vasculature, overexpression of receptors and enzymes, as well as acidic and thiolytic characteristics of the tumor microenvironment. Take home message: It is concluded that the design of new liposomal drug delivery systems that better exploit tumor characteristic features is likely to result in more efficacious cancer treatments.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

In vivo toxicity of cationic micelles and liposomes

Kristina Bram Knudsen; Helle Northeved; Pramod Kumar Ek; Anders Permin; Torben Gjetting; Thomas Lars Andresen; Steen Larsen; Karen Malene Wegener; Jens Lykkesfeldt; Kim Jantzen; Steffen Loft; Peter Møller; Martin Roursgaard

UNLABELLED This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the last of three intravenous injections of 100 mg/kg every other day. Histological evaluation of liver, lung and spleen, clinical chemistry parameters, and hematology indicated little effect of treatment. DNA strand breaks were increased in the lung and spleen. Further, in the dose response study we found unaltered expression levels of genes in the antioxidant response (HMOX1) and repair of oxidized nucleobases (OGG1), whereas expression levels of cytokines (IL6, CXCL2 and CCL2) were elevated in lung, spleen or liver. The results indicate that assessment of genotoxicity and gene expression add information on toxicity of nanocarriers, which is not obtained by histology and hematology. FROM THE CLINICAL EDITOR This study investigates the toxicity of cationic micelles and liposomes utilized as nanocarriers in gene and drug delivery, demonstrating its effects on the lungs, spleen and liver.


ACS Nano | 2015

Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes

Anders Elias Hansen; Anncatrine Luisa Petersen; Henriksen; Boerresen B; Palle Rasmussen; Dennis Ringkjøbing Elema; af Rosenschöld Pm; Annemarie T. Kristensen; Andreas Kjær; Thomas Lars Andresen

Since the first report of the enhanced permeability and retention (EPR) effect, the research in nanocarrier based antitumor drugs has been intense. The field has been devoted to treatment of cancer by exploiting EPR-based accumulation of nanocarriers in solid tumors, which for many years was considered to be a ubiquitous phenomenon. However, the understanding of differences in the EPR-effect between tumor types, heterogeneities within each patient group, and dependency on tumor development stage in humans is sparse. It is therefore important to enhance our understanding of the EPR-effect in large animals and humans with spontaneously developed cancer. In the present paper, we describe a novel loading method of copper-64 into PEGylated liposomes and use these liposomes to evaluate the EPR-effect in 11 canine cancer patients with spontaneous solid tumors by PET/CT imaging. We thereby provide the first high-resolution analysis of EPR-based tumor accumulation in large animals. We find that the EPR-effect is strong in some tumor types but cannot be considered a general feature of solid malignant tumors since we observed a high degree of accumulation heterogeneity between tumors. Six of seven included carcinomas displayed high uptake levels of liposomes, whereas one of four sarcomas displayed signs of liposome retention. We conclude that nanocarrier-radiotracers could be important in identifying cancer patients that will benefit from nanocarrier-based therapeutics in clinical practice.

Collaboration


Dive into the Thomas Lars Andresen's collaboration.

Top Co-Authors

Avatar

Jonas Rosager Henriksen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Rasmus Irming Jølck

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Anders Elias Hansen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Andreas Kjær

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Fredrik Melander

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mads Hartvig Clausen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Palle Rasmussen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristoffer Almdal

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge