Andreas van Impel
Royal Netherlands Academy of Arts and Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas van Impel.
Developmental Cell | 2015
Fatma O. Kok; Masahiro Shin; Chih-Wen Ni; Ankit Gupta; Ann S. Grosse; Andreas van Impel; Bettina C. Kirchmaier; Josi Peterson-Maduro; George Kourkoulis; Ira Male; Dana F. DeSantis; Sarah Sheppard-Tindell; Lwaki Ebarasi; Christer Betsholtz; Stefan Schulte-Merker; Scot A. Wolfe; Nathan D. Lawson
The widespread availability of programmable site-specific nucleases now enables targeted gene disruption in the zebrafish. In this study, we applied site-specific nucleases to generate zebrafish lines bearing individual mutations in more than 20 genes. We found that mutations in only a small proportion of genes caused defects in embryogenesis. Moreover, mutants for ten different genes failed to recapitulate published Morpholino-induced phenotypes (morphants). The absence of phenotypes in mutant embryos was not likely due to maternal effects or failure to eliminate gene function. Consistently, a comparison of published morphant defects with the Sanger Zebrafish Mutation Project revealed that approximately 80% of morphant phenotypes were not observed in mutant embryos, similar to our mutant collection. Based on these results, we suggest that mutant phenotypes become the standard metric to define gene function in zebrafish, after which Morpholinos that recapitulate respective phenotypes could be reliably applied for ancillary analyses.
Circulation Research | 2011
Frank L. Bos; Maresa Caunt; Josi Peterson-Maduro; Lara Planas-Paz; Joe Kowalski; Terhi Karpanen; Andreas van Impel; Raymond K. Tong; James A. Ernst; Jeroen Korving; Johan H. van Es; Eckhard Lammert; Henricus J. Duckers; Stefan Schulte-Merker
Rationale: Collagen- and calcium-binding EGF domains 1 (CCBE1) has been associated with Hennekam syndrome, in which patients have lymphedema, lymphangiectasias, and other cardiovascular anomalies. Insight into the molecular role of CCBE1 is completely lacking, and mouse models for the disease do not exist. Objective: CCBE1 deficient mice were generated to understand the function of CCBE1 in cardiovascular development, and CCBE1 recombinant protein was used in both in vivo and in vitro settings to gain insight into the molecular function of CCBE1. Methods and Results: Phenotypic analysis of murine Ccbe1 mutant embryos showed a complete lack of definitive lymphatic structures, even though Prox1+ lymphatic endothelial cells get specified within the cardinal vein. Mutant mice die prenatally. Proximity ligation assays indicate that vascular endothelial growth factor receptor 3 activation appears unaltered in mutants. Human CCBE1 protein binds to components of the extracellular matrix in vitro, and CCBE1 protein strongly enhances vascular endothelial growth factor-C–mediated lymphangiogenesis in a corneal micropocket assay. Conclusions: Our data identify CCBE1 as a factor critically required for budding and migration of Prox-1+ lymphatic endothelial cells from the cardinal vein. CCBE1 probably exerts these effects through binding to components of the extracellular matrix. CCBE1 has little lymphangiogenic effect on its own but dramatically enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Thus, our data suggest CCBE1 to be essential but not sufficient for lymphangiogenesis.
American Journal of Human Genetics | 2012
Pia Ostergaard; Michael A. Simpson; Antonella Mendola; Pradeep Vasudevan; Fiona Connell; Andreas van Impel; Anthony T. Moore; Bart Loeys; Alexandros Onoufriadis; Ines Martinez-Corral; Sophie Devery; Jules G. Leroy; Lut Van Laer; Amihood Singer; Martin G. Bialer; Meriel McEntagart; Oliver Quarrell; Glen Brice; Richard C. Trembath; Stefan Schulte-Merker; Taija Mäkinen; Miikka Vikkula; Peter S. Mortimer; Sahar Mansour; Steve Jeffery
We have identified KIF11 mutations in individuals with syndromic autosomal-dominant microcephaly associated with lymphedema and/or chorioretinopathy. Initial whole-exome sequencing revealed heterozygous KIF11 mutations in three individuals with a combination of microcephaly and lymphedema from a microcephaly-lymphedema-chorioretinal-dysplasia cohort. Subsequent Sanger sequencing of KIF11 in a further 15 unrelated microcephalic probands with lymphedema and/or chorioretinopathy identified additional heterozygous mutations in 12 of them. KIF11 encodes EG5, a homotetramer kinesin motor. The variety of mutations we have found (two nonsense, two splice site, four missense, and six indels causing frameshifts) are all predicted to have an impact on protein function. EG5 has previously been shown to play a role in spindle assembly and function, and these findings highlight the critical role of proteins necessary for spindle formation in CNS development. Moreover, identification of KIF11 mutations in patients with chorioretinopathy and lymphedema suggests that EG5 is involved in the development and maintenance of retinal and lymphatic structures.
Development | 2014
Ludovic Le Guen; Terhi Karpanen; Dörte Schulte; Nicole C. Harris; Katarzyna Koltowska; Guy Roukens; Neil I. Bower; Andreas van Impel; Steven A. Stacker; Marc G. Achen; Stefan Schulte-Merker; Benjamin M. Hogan
The VEGFC/VEGFR3 signaling pathway is essential for lymphangiogenesis (the formation of lymphatic vessels from pre-existing vasculature) during embryonic development, tissue regeneration and tumor progression. The recently identified secreted protein CCBE1 is indispensible for lymphangiogenesis during development. The role of CCBE1 orthologs is highly conserved in zebrafish, mice and humans with mutations in CCBE1 causing generalized lymphatic dysplasia and lymphedema (Hennekam syndrome). To date, the mechanism by which CCBE1 acts remains unknown. Here, we find that ccbe1 genetically interacts with both vegfc and vegfr3 in zebrafish. In the embryo, phenotypes driven by increased Vegfc are suppressed in the absence of Ccbe1, and Vegfc-driven sprouting is enhanced by local Ccbe1 overexpression. Moreover, Vegfc- and Vegfr3-dependent Erk signaling is impaired in the absence of Ccbe1. Finally, CCBE1 is capable of upregulating the levels of fully processed, mature VEGFC in vitro and the overexpression of mature VEGFC rescues ccbe1 loss-of-function phenotypes in zebrafish. Taken together, these data identify Ccbe1 as a crucial component of the Vegfc/Vegfr3 pathway in the embryo.
Circulation Research | 2013
Kristiana Gordon; Dörte Schulte; Glen Brice; Michael A. Simpson; M. Guy Roukens; Andreas van Impel; Fiona Connell; Kamini Kalidas; Steve Jeffery; P.S. Mortimer; Sahar Mansour; Stefan Schulte-Merker; Pia Ostergaard
Rationale: Mutations in vascular endothelial growth factor (VEGF) receptor-3 (VEGFR3 or FLT4) cause Milroy disease, an autosomal dominant condition that presents with congenital lymphedema. Mutations in VEGFR3 are identified in only 70% of patients with classic Milroy disease, suggesting genetic heterogeneity. Objective: To investigate the underlying cause in patients with clinical signs resembling Milroy disease in whom sequencing of the coding region of VEGFR3 did not reveal any pathogenic variation. Methods and Results: Exome sequencing of 5 such patients was performed, and a novel frameshift variant, c.571_572insTT in VEGFC, a ligand for VEGFR3, was identified in 1 proband. The variant cosegregated with the affected status in the family. An assay to assess the biological function of VEGFC activity in vivo, by expressing human VEGFC in the zebrafish floorplate was established. Forced expression of wild-type human VEGFC in the floorplate of zebrafish embryos leads to excessive sprouting in neighboring vessels. However, when overexpressing the human c.571_572insTT variant in the floorplate, no sprouting of vessels was observed, indicating that the base changes have a marked effect on the activity of VEGFC. Conclusions: We propose that the mutation in VEGFC is causative for the Milroy disease-like phenotype seen in this family. This is the first time a mutation in one of the ligands of VEGFR3 has been reported to cause primary lymphedema.Rationale: Mutations in VEGFR3 (FLT4) cause Milroy Disease (MD), an autosomal dominant condition that presents with congenital lymphedema. Mutations in VEGFR3 are identified in only 70% of patients with classic MD, suggesting genetic heterogeneity. Objective: To investigate the underlying cause in patients with clinical signs resembling MD in whom sequencing of the coding region of VEGFR3 did not reveal any pathogenic variation. Methods and Results: Exome sequencing of five such patients was performed and a novel frameshift variant, c.571\_572insTT in VEGFC , a ligand for VEGFR3, was identified in one proband. The variant co-segregated with the affected status in the family. An assay to assess the biological function of VEGFC activity in vivo, by expressing human VEGFC in the zebrafish floorplate was established. Forced expression of wildtype human VEGFC in the floorplate of zebrafish embryos leads to excessive sprouting in neighbouring vessels. However, when overexpressing the human c.571\_572insTT variant in the floorplate, no sprouting of vessels was observed, indicating that the base changes have a marked effect on the activity of VEGFC. Conclusions: We propose that the mutation in VEGFC is causative for the MD-like phenotype seen in this family. This is the first time a mutation in one of the ligands of VEGFR3 has been reported to cause primary lymphedema.
Development | 2014
Andreas van Impel; Zhonghua Zhao; Dorien M. A. Hermkens; M. Guy Roukens; Johanna C. Fischer; Josi Peterson-Maduro; Henricus J. Duckers; Elke A. Ober; Philip W. Ingham; Stefan Schulte-Merker
In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed in different endothelial compartments, becoming restricted to lymphatic endothelial cells only at later stages. Second, using targeted mutagenesis, we show that Prox1a is dispensable for lymphatic specification and subsequent lymphangiogenesis in zebrafish. In line with this result, we found that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways.
Development | 2009
Andreas van Impel; Sabine Schumacher; Margarethe Draga; Hans-Martin Herz; Jörg Großhans; H.-Arno J. Müller
The Drosophila guanine nucleotide exchange factor Pebble (Pbl) is essential for cytokinesis and cell migration during gastrulation. In dividing cells, Pbl promotes Rho1 activation at the cell cortex, leading to formation of the contractile actin-myosin ring. The role of Pbl in fibroblast growth factor-triggered mesoderm spreading during gastrulation is less well understood and its targets and subcellular localization are unknown. To address these issues we performed a domain-function study in the embryo. We show that Pbl is localized to the nucleus and the cell cortex in migrating mesoderm cells and found that, in addition to the PH domain, the conserved C-terminal tail of the protein is crucial for cortical localization. Moreover, we show that the Rac pathway plays an essential role during mesoderm migration. Genetic and biochemical interactions indicate that during mesoderm migration, Pbl functions by activating a Rac-dependent pathway. Furthermore, gain-of-function and rescue experiments suggest an important regulatory role of the C-terminal tail of Pbl for the selective activation of Rho1-versus Rac-dependent pathways.
eLife | 2017
Max van Lessen; Shannon Shibata-Germanos; Andreas van Impel; Thomas A. Hawkins; Jason Rihel; Stefan Schulte-Merker
The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain. DOI: http://dx.doi.org/10.7554/eLife.25932.001
Development | 2015
Dorien M. A. Hermkens; Andreas van Impel; Akihiro Urasaki; Jeroen Bussmann; Henricus J. Duckers; Stefan Schulte-Merker
SoxF family members have been linked to arterio-venous specification events and human pathological conditions, but in contrast to Sox17 and Sox18, a detailed in vivo analysis of a Sox7 mutant model is still lacking. In this study we generated zebrafish sox7 mutants to understand the role of Sox7 during vascular development. By in vivo imaging of transgenic zebrafish lines we show that sox7 mutants display a short circulatory loop around the heart as a result of aberrant connections between the lateral dorsal aorta (LDA) and either the venous primary head sinus (PHS) or the common cardinal vein (CCV). In situ hybridization and live observations in flt4:mCitrine transgenic embryos revealed increased expression levels of flt4 in arterial endothelial cells at the exact location of the aberrant vascular connections in sox7 mutants. An identical circulatory short loop could also be observed in newly generated mutants for hey2 and efnb2. By genetically modulating levels of sox7, hey2 and efnb2 we demonstrate a genetic interaction of sox7 with hey2 and efnb2. The specific spatially confined effect of loss of Sox7 function can be rescued by overexpressing the Notch intracellular domain (NICD) in arterial cells of sox7 mutants, placing Sox7 upstream of Notch in this aspect of arterial development. Hence, sox7 levels are crucial in arterial specification in conjunction with hey2 and efnb2 function, with mutants in all three genes displaying shunt formation and an arterial block. Summary: The formation of the arterial-venous shunt in zebrafish requires Sox7, which genetically interacts with hey2 and efnb2, activates the Notch signaling pathway and restricts flt4 expression.
Nature Communications | 2017
Raphael Wild; Alina Klems; Masanari Takamiya; Yuya Hayashi; Uwe Strähle; Koji Ando; Naoki Mochizuki; Andreas van Impel; Stefan Schulte-Merker; Janna Krueger; Laetitia Preau; Ferdinand le Noble
Formation of organ-specific vasculatures requires cross-talk between developing tissue and specialized endothelial cells. Here we show how developing zebrafish spinal cord neurons coordinate vessel growth through balancing of neuron-derived Vegfaa, with neuronal sFlt1 restricting Vegfaa-Kdrl mediated angiogenesis at the neurovascular interface. Neuron-specific loss of flt1 or increased neuronal vegfaa expression promotes angiogenesis and peri-neural tube vascular network formation. Combining loss of neuronal flt1 with gain of vegfaa promotes sprout invasion into the neural tube. On loss of neuronal flt1, ectopic sprouts emanate from veins involving special angiogenic cell behaviours including nuclear positioning and a molecular signature distinct from primary arterial or secondary venous sprouting. Manipulation of arteriovenous identity or Notch signalling established that ectopic sprouting in flt1 mutants requires venous endothelium. Conceptually, our data suggest that spinal cord vascularization proceeds from veins involving two-tiered regulation of neuronal sFlt1 and Vegfaa via a novel sprouting mode.