Josi Peterson-Maduro
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Josi Peterson-Maduro.
Cell | 1996
Miranda Molenaar; Marc van de Wetering; Mariëtte Oosterwegel; Josi Peterson-Maduro; Susan Godsave; Vladimir Korinek; Jeroen P. Roose; Olivier Destrée; Hans Clevers
XTcf-3 is a maternally expressed Xenopus homolog of the mammalian HMG box factors Tcf-1 and Lef-1. The N-terminus of XTcf-3 binds to beta-catenin. Microinjection of XTcf-3 mRNA in embryos results in nuclear translocation of beta-catenin. The beta-catenin-XTcf-3 complex activates transcription in a transient reporter gene assay, while XTcf-3 by itself is silent. N-terminal deletion of XTcf-3 (delta N) abrogates the interaction with beta-catenin, as well as the consequent transcription activation. This dominant-negative delta N mutant suppresses the induction of axis duplication by microinjected beta-catenin. It also suppresses endogenous axis specification upon injection into the dorsal blastomeres of a 4-cell-stage embryo. We propose that signaling by beta-catenin involves complex formation with XTcf-3, followed by nuclear translocation and activation of specific XTcf-3 target genes.
Developmental Cell | 2015
Fatma O. Kok; Masahiro Shin; Chih-Wen Ni; Ankit Gupta; Ann S. Grosse; Andreas van Impel; Bettina C. Kirchmaier; Josi Peterson-Maduro; George Kourkoulis; Ira Male; Dana F. DeSantis; Sarah Sheppard-Tindell; Lwaki Ebarasi; Christer Betsholtz; Stefan Schulte-Merker; Scot A. Wolfe; Nathan D. Lawson
The widespread availability of programmable site-specific nucleases now enables targeted gene disruption in the zebrafish. In this study, we applied site-specific nucleases to generate zebrafish lines bearing individual mutations in more than 20 genes. We found that mutations in only a small proportion of genes caused defects in embryogenesis. Moreover, mutants for ten different genes failed to recapitulate published Morpholino-induced phenotypes (morphants). The absence of phenotypes in mutant embryos was not likely due to maternal effects or failure to eliminate gene function. Consistently, a comparison of published morphant defects with the Sanger Zebrafish Mutation Project revealed that approximately 80% of morphant phenotypes were not observed in mutant embryos, similar to our mutant collection. Based on these results, we suggest that mutant phenotypes become the standard metric to define gene function in zebrafish, after which Morpholinos that recapitulate respective phenotypes could be reliably applied for ancillary analyses.
Current Biology | 2006
Axel M. Küchler; Evisa Gjini; Josi Peterson-Maduro; Belinda Cancilla; Hartwig Wolburg; Stefan Schulte-Merker
Lymphangiogenesis results in the formation of a vascular network distinct from arteries and veins that serves to drain interstitial fluid from surrounding tissues and plays a pivotal role in the immune defense of vertebrates as well as in the progression of cancer and other diseases . In mammals, lymph vessels are lined by endothelial cells possibly sprouting from embryonic veins, and their development appears to be critically dependent on the function of PROX1 and VEGFC signaling . The existence of a lymphatic system in teleosts has been a matter of debate for decades. Here we show on the morphological, molecular, and functional levels that zebrafish embryos develop a lymphatic vasculature that serves to retrieve components of the interstitium to the lymph system. We demonstrate the existence of vessels that are molecularly and functionally distinct from blood vessels and show that the development of these vessels depends on Vegfc and VEGFR-3/Flt4 signaling. These findings imply that the molecular components controlling lymphangiogenesis in zebrafish and mammals are conserved and that the zebrafish lymphatic system develops early enough to allow in vivo observations, lineage tracing, and genetic as well as pharmacological screens.
Development | 2008
Kirsten M. Spoorendonk; Josi Peterson-Maduro; Jörg Renn; Torsten Trowe; S. Kranenbarg; Christoph Winkler; Stefan Schulte-Merker
Retinoic acid (RA) plays important roles in diverse biological processes ranging from germ cell specification to limb patterning. RA ultimately exerts its effect in the nucleus, but how RA levels are being generated and maintained locally is less clear. Here, we have analyzed the zebrafish stocksteif mutant, which exhibits severe over-ossification of the entire vertebral column. stocksteif encodes cyp26b1, a cytochrome P450 member that metabolizes RA. The mutant is completely phenocopied by treating 4 dpf wild-type embryos with either RA or the pharmacological Cyp26 blocker R115866, thus identifying a previously unappreciated role for RA and cyp26b1 in osteogenesis of the vertebral column. Cyp26b1 is expressed within osteoblast cells, demonstrating that RA levels within these cells need to be tightly controlled. Furthermore, we have examined the effect of RA on osteoblasts in vivo. As numbers of osteoblasts do not change upon RA treatment, we suggest that RA causes increased activity of axial osteoblasts, ultimately resulting in defective skeletogenesis.
Circulation Research | 2011
Frank L. Bos; Maresa Caunt; Josi Peterson-Maduro; Lara Planas-Paz; Joe Kowalski; Terhi Karpanen; Andreas van Impel; Raymond K. Tong; James A. Ernst; Jeroen Korving; Johan H. van Es; Eckhard Lammert; Henricus J. Duckers; Stefan Schulte-Merker
Rationale: Collagen- and calcium-binding EGF domains 1 (CCBE1) has been associated with Hennekam syndrome, in which patients have lymphedema, lymphangiectasias, and other cardiovascular anomalies. Insight into the molecular role of CCBE1 is completely lacking, and mouse models for the disease do not exist. Objective: CCBE1 deficient mice were generated to understand the function of CCBE1 in cardiovascular development, and CCBE1 recombinant protein was used in both in vivo and in vitro settings to gain insight into the molecular function of CCBE1. Methods and Results: Phenotypic analysis of murine Ccbe1 mutant embryos showed a complete lack of definitive lymphatic structures, even though Prox1+ lymphatic endothelial cells get specified within the cardinal vein. Mutant mice die prenatally. Proximity ligation assays indicate that vascular endothelial growth factor receptor 3 activation appears unaltered in mutants. Human CCBE1 protein binds to components of the extracellular matrix in vitro, and CCBE1 protein strongly enhances vascular endothelial growth factor-C–mediated lymphangiogenesis in a corneal micropocket assay. Conclusions: Our data identify CCBE1 as a factor critically required for budding and migration of Prox-1+ lymphatic endothelial cells from the cardinal vein. CCBE1 probably exerts these effects through binding to components of the extracellular matrix. CCBE1 has little lymphangiogenic effect on its own but dramatically enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Thus, our data suggest CCBE1 to be essential but not sufficient for lymphangiogenesis.
Development | 2014
Andreas van Impel; Zhonghua Zhao; Dorien M. A. Hermkens; M. Guy Roukens; Johanna C. Fischer; Josi Peterson-Maduro; Henricus J. Duckers; Elke A. Ober; Philip W. Ingham; Stefan Schulte-Merker
In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed in different endothelial compartments, becoming restricted to lymphatic endothelial cells only at later stages. Second, using targeted mutagenesis, we show that Prox1a is dispensable for lymphatic specification and subsequent lymphangiogenesis in zebrafish. In line with this result, we found that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways.
Nature Cell Biology | 2010
M. Guy Roukens; Mariam Alloul-Ramdhani; Bart Baan; Kazuki Kobayashi; Josi Peterson-Maduro; Hans van Dam; Stefan Schulte-Merker; David A. Baker
We show that the transcriptional repressor Tel plays an evolutionarily conserved role in angiogenesis: it is indispensable for the sprouting of human endothelial cells and for normal development of the Danio rerio blood circulatory system. Tel orchestrates endothelial sprouting by binding to the generic co-repressor, CtBP. The Tel–CtBP complex temporally restricts a VEGF (vascular endothelial growth factor)-mediated pulse of dll4 expression and thereby directly links VEGF receptor intracellular signalling and intercellular Notch–Dll4 signalling. It further controls branching by regulating expression of other factors that constrain angiogenesis such as sprouty family members and ve-cadherin. Thus, the Tel–CtBP complex conditions endothelial cells for angiogenesis by controlling the balance between stimulatory and antagonistic sprouting cues. Tel control of branching seems to be a refinement of invertebrate tracheae morphogenesis that requires Yan, the invertebrate orthologue of Tel. This work highlights Tel and its associated networks as potential targets for the development of therapeutic strategies to inhibit pathological angiogenesis.
Gene Expression Patterns | 2003
Giulietta Roël; Olaf Van Den Broek; Nicole Spieker; Josi Peterson-Maduro; Olivier Destrée
We report the cloning and expression of Xenopus Tcf-1. The amino acid sequence of Tcf-1 of Xenopus laevis and Xenopus tropicalis is closely related to that of chicken, mouse and man. Thus, the family of Tcf/Lef proteins in the amphibian Xenopus comprises four members as in higher vertebrates. RT-PCR analysis revealed that Tcf-1 RNA encoding a beta-catenin binding isoform is maternally present as well as throughout early development. Different transcripts are expressed by alternative splicing. In cleavage and blastula stage embryos, Tcf-1 RNA is present at high levels in the animal hemisphere. During gastrulation Tcf-1 is differentially expressed with high levels in the animal cap and most of the marginal zone except for a narrow domain around the blastopore. At neurula stages expression is predominant in the neural plate. At tailbud stages expression is localized in specific areas of the brain, in the eyes, the otic vesicle, branchial arches and head mesenchyme, somites, tailbud, pronephros and pronephric duct.
Disease Models & Mechanisms | 2014
Alexander Apschner; Leonie F. A. Huitema; Bas Ponsioen; Josi Peterson-Maduro; Stefan Schulte-Merker
In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf), which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1), a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI) is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE) have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues – most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin). Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord mineralization phenotype. This indicates that enpp1 can exert its function in tissues that are remote from its site of expression.
Cell Death & Differentiation | 1998
Gert Jan C. Veenstra; Josi Peterson-Maduro; Mathu Mt; van der Vliet Pc; Olivier Destrée
Oct-1, a member of the POU family of transcription factors, is expressed at relatively high levels in ectodermal and mesodermal cell lineages during early Xenopus embryogenesis (). Here we show that overexpression of Oct-1 induces programmed cell death concomitant with the loss of the posterior part of the body axis. Truncated Oct-1 variants, missing either the C-terminal or N-terminal trans-activation domain, exhibit a different capacity to cause such developmental defects. Oct-1-induced cell death is rescued in unilaterally injected embryos by non-injected cells, indicative of the non-cell autonomous character of the developmental effects of Oct-1. This was confirmed by marker gene analysis, which showed a significant decrease in brachyury expression, suggesting that Oct-1 interferes with an FGF-type signalling pathway.