Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreas Vieli is active.

Publication


Featured researches published by Andreas Vieli.


Geophysical Research Letters | 2004

Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans

Antony J. Payne; Andreas Vieli; Andrew Shepherd; Duncan J. Wingham; Eric Rignot

A growing body of observational data suggests that Pine Island Glacier (PIG) is changing on decadal or shorter timescales. These changes may have far-reaching consequences for the future of the West Antarctic ice sheet (WAIS) and global sea levels because of PIGs role as the ice sheets primary drainage portal. We test the hypothesis that these changes are triggered by the adjoining ocean. Specifically, we employ an advanced numerical ice-flow model to simulate the effects of perturbations at the grounding line on PIGs dynamics. The speed at which these changes are propagated upstream implies a tight coupling between ice-sheet interior and surrounding ocean.


Nature | 2013

Future sea-level rise from Greenland/'s main outlet glaciers in a warming climate

F. M. Nick; Andreas Vieli; Morten Andersen; Ian Joughin; Antony J. Payne; Tamsin L. Edwards; Frank Pattyn; Roderik S. W. van de Wal

Over the past decade, ice loss from the Greenland Ice Sheet increased as a result of both increased surface melting and ice discharge to the ocean. The latter is controlled by the acceleration of ice flow and subsequent thinning of fast-flowing marine-terminating outlet glaciers. Quantifying the future dynamic contribution of such glaciers to sea-level rise (SLR) remains a major challenge because outlet glacier dynamics are poorly understood. Here we present a glacier flow model that includes a fully dynamic treatment of marine termini. We use this model to simulate behaviour of four major marine-terminating outlet glaciers, which collectively drain about 22 per cent of the Greenland Ice Sheet. Using atmospheric and oceanic forcing from a mid-range future warming scenario that predicts warming by 2.8 degrees Celsius by 2100, we project a contribution of 19 to 30 millimetres to SLR from these glaciers by 2200. This contribution is largely (80 per cent) dynamic in origin and is caused by several episodic retreats past overdeepenings in outlet glacier troughs. After initial increases, however, dynamic losses from these four outlets remain relatively constant and contribute to SLR individually at rates of about 0.01 to 0.06 millimetres per year. These rates correspond to ice fluxes that are less than twice those of the late 1990s, well below previous upper bounds. For a more extreme future warming scenario (warming by 4.5 degrees Celsius by 2100), the projected losses increase by more than 50 per cent, producing a cumulative SLR of 29 to 49 millimetres by 2200.


Journal of Glaciology | 2010

A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics

F. M. Nick; C. J. van der Veen; Andreas Vieli; Douglas I. Benn

We present results from numerical ice-flow models that include calving criteria based on penetration of surface and basal crevasses, which in turn is a function of longitudinal strain rates near the glacier front. The position of the calving front is defined as the point where either (1) surface crevasses reach the waterline (model CDw), or (2) surface and basal crevasses penetrate the full thickness of the glacier (model CD). For comparison with previous studies, results are also presented for a height-above-buoyancy calving model. Qualitatively, both models CDw and CD produce similar behaviour. Unlike previous models for calving, the new calving criteria are applicable to both grounded termini and floating ice shelves and tongues. The numerical ice-flow model is applied to an idealized geometry characteristic of marine outlet glaciers. Results indicate that grounding-line dynamics are less sensitive to basal topography than previously suggested. Stable grounding-line positions can be obtained even on a reverse bed slope with or without floating termini. The proposed calving criteria also allow calving losses to be linked to surface melt and therefore climate. In contrast to previous studies in which calving rate or position of the terminus is linked to local water depth, the new calving criterion is able to produce seasonal cycles of retreat and advance as observed for Greenland marine outlet glaciers. The contrasting dynamical behaviour and stability found for different calving models suggests that a realistic parameterization for the process of calving is crucial for any predictions of marine outlet glacier change.


Journal of Glaciology | 2001

Flow dynamics of tidewater glaciers : a numerical modelling approach.

Andreas Vieli; Martin Funk; Heinz Blatter

The dynamics of grounded tidewater glaciers is investigated with a time-dependent numerical flow model, which solves the full equations for the stress and velocity fields and includes a water-pressure-dependent sliding law. The calving criterion implemented in the model shifts the calving front at each time-step to the position where the frontal ice thickness exceeds flotation height by a prescribed value. With this model, the linear relation between calving rate and water depth proposed on empirical grounds is qualitatively reproduced for the situation of a slowly retreating or advancing terminus, but not for situations of rapid changes. Length changes of tidewater glaciers, i.e.especially rapid changes, are dominantly controlled by the bed topography and are to a minor degree a direct reaction to a mass-balance change. Thus, accurate information on the near-terminus bed topography is required for reliable prediction of the terminus changes due to climate changes. The results also confirm the suggested cycles of slow advance and rapid retreat through a basal depression. Rapid changes in terminus positions preferably occur in places where the bed slopes upwards in the ice-flow direction.


Bulletin of the American Meteorological Society | 2013

Challenges to understanding the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing

Fiamma Straneo; Patrick Heimbach; Olga V. Sergienko; Gordon S. Hamilton; Ginny A. Catania; Stephen M. Griffies; Robert Hallberg; Adrian Jenkins; Ian Joughin; Roman J. Motyka; W. Tad Pfeffer; Stephen F. Price; Eric Rignot; Theodore A. Scambos; Martin Truffer; Andreas Vieli

A working group on Greenland Ice Sheet-Ocean Interactions (GRISO), composed of representatives from the multiple disciplines involved, was established in January 2011 to develop strategies to address dynamic response of Greenlands glaciers to climate forcing. Critical aspects of Greenlands coupled ice sheet-ocean system are identified, and a research agenda is outlined that will yield fundamental insights into how the ice sheet and ocean interact, their role in Earths climate system, their regional and global effects, and probable trajectories of future changes. Key elements of the research agenda are focused process studies, sustained observational efforts at key sites, and inclusion of the relevant dynamics in Earth system models. Interdisciplinary and multiagency efforts, as well as international cooperation, are crucial to making progress on this novel and complex problem. This will prove as a significant step toward fulfilling the goal of credibly projecting sea level rise over the coming decades and century.


Journal of Glaciology | 2002

The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen

Andreas Vieli; Jacek Jania; Lezek Kolondra

Based on observations and model calculations, the retreat over the last two decades of Hansbreen, a tidewater glacier in southern Spitsbergen, Svalbard, is investigated. The observations of the calving-front position between 1982 and 1998 show an abrupt retreat in 1990, which is suggested to be related to a depression in the glacier bed. The observed seasonal variations of the front position are mainly due to variations of the calving rate. The observations of Hansbreen further indicate that during periods of slow front-position changes, melting at the water-line may play an important role in triggering the process of calving. The evolution of Hansbreen between 1982 and 1998 is simulated with a numerical model for the dynamics of tidewater glaciers. Using a flotation criterion for calving in which for each time-step the part of the glacier terminus which is below a critical height above buoyancy is removed, we are able to reproduce the observed rapid retreat of Hansbreen through the depression in the glacier bed. From the observations and model calculations, we conclude that the rapid retreat is mainly an effect of basal topography in the terminus region and not a direct response to a change in mass balance.


Annals of Glaciology | 2003

Application of control methods for modelling the flow of Pine island Glacier, West Antarctica

Andreas Vieli; Antony J. Payne

Abstract The distribution of basal traction on a transect along Pine Island Glacier, West Antarctica, is estimated by inverting observed surface velocities using a control method and a simple numerical stream-flow model. This model calculates the horizontal flow along a transect, based on the assumptions that the horizontal flow is independent of ice depth and that the driving stresses are balanced by resistive forces at the glacier bed and margin and by gradients in longitudinal stress. Basal traction is assumed to be linearly related to the basal velocity. For the lateral shear traction a parameterization based on an inversion of Glen’s flow law is used. The application of the control method allows us to calculate the set of model parameters (e.g. the basal friction coefficient) that gives the best fit between modelled andobserved surface velocities. The model is used to investigate the stress regime of Pine Island Glacier, in particular to estimate the importance of basal, lateral and longitudinal stresses relative to each other. In the flat region just behind the grounding line, basal drag, lateral drag and the longitudinal stress gradient are the same order of magnitude. In the steep region up-glacier from the grounding line, the driving stresses are highest and balanced predominantly by basal resistive stresses. Further upstream, in the trunk of the glacier, lateral and basal drag predominate.


Philosophical Transactions of the Royal Society A | 2006

Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula

Andreas Vieli; Antony J. Payne; Zhijun Du; Andrew Shepherd

In this study, the flow and rheology of pre-collapse Larsen B ice shelf are investigated by using a combination of flow modelling and data assimilation. Observed shelf velocities from satellite interferometry are used to constrain an ice shelf model by using a data assimilation technique based on the control method. In particular, the ice rheology field and the velocities at the inland shelf boundary are simultaneously optimized to get a modelled flow and stress field that is consistent with the observed flow. The application to the Larsen B ice shelf shows that a strong weakening of the ice in the shear zones, mostly along the margins, is necessary to fit the observed shelf flow. This pattern of bands with weak ice is a very robust feature of the inversion, whereas the ice rheology within the main shelf body is found to be not well constrained. This suggests that these weak zones play a major role in the control of the flow of the Larsen B ice shelf and may be the key to understanding the observed pre-collapse thinning and acceleration of Larsen B. Regarding the sensitivity of the stress field to rheology, the consistency of the model with the observed flow seems crucial for any further analysis such as the application of fracture mechanics or perturbation model experiments.


Annals of Glaciology | 2000

Tidewater glaciers: frontal flow acceleration and basal sliding

Andreas Vieli; Martin Funk; Heinz Blatter

Abstract A numerical glacier-flow model (finite-element method) is used to suggest the processes that control the flow behind the calving front of a tidewater glacier. The model is developed for grounded calving glaciers and includes an effective-pressure-dependent sliding law The sliding law is implemented by adding a soft basal layer with a variable viscosity The model is applied on Hansbreen, a tidewater calving glacier in Svalbard. Comparison between modeled surface velocities and observed velocity data shows good agreement. We conclude that the flow of a grounded calving glacier can be modeled with an effective-pressure-dependent sliding law


Progress in Physical Geography | 2013

Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing Twenty years of rapid change

J. Rachel Carr; Chris R. Stokes; Andreas Vieli

Until relatively recently, it was assumed that Arctic ice masses would respond to climatic/oceanic forcing over millennia, but observations made during the past two decades have radically altered this viewpoint and have demonstrated that marine-terminating outlet glaciers can undergo dramatic dynamic change at annual timescales. This paper reviews the substantial progress made in our understanding of the links between marine-terminating Arctic outlet glacier behaviour and the ocean-climate system during the past 20 years, when many ice masses have rapidly lost mass. Specifically, we assess three primary climatic/oceanic controls on outlet glacier dynamics, namely air temperature, ocean temperature and sea ice concentrations, and discuss key linkages between them. Despite recent progress, significant uncertainty remains over the response of marine-terminating outlet glaciers to these forcings, most notably: (1) the spatial variation in the relative importance of each factor; (2), the contribution of glacier-specific factors to glacier dynamics; and (3) the limitations in our ability to accurately model marine-terminating outlet glacier behaviour. Our present understanding precludes us from identifying patterns of outlet glacier response to forcing that are applicable across the Arctic and we underscore the potential danger of extrapolating rates of mass loss from a small sample of study glaciers.

Collaboration


Dive into the Andreas Vieli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. M. Nick

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Joughin

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge