Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stewart S. R. Jamieson is active.

Publication


Featured researches published by Stewart S. R. Jamieson.


Nature | 2012

Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch

Jörg Pross; Lineth Contreras; Peter K. Bijl; David R. Greenwood; Steven M. Bohaty; Stefan Schouten; James Bendle; Ursula Röhl; Lisa Tauxe; J. Ian Raine; Claire E Huck; Tina van de Flierdt; Stewart S. R. Jamieson; Catherine E. Stickley; Bas van de Schootbrugge; Carlota Escutia; Henk Brinkhuis

The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth’s climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene ‘greenhouse world’, however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.


Geomorphology | 2004

Tectonic forcing of longitudinal valleys in the Himalaya: morphological analysis of the Ladakh Batholith, North India

Stewart S. R. Jamieson; Hugh D. Sinclair; Linda A. Kirstein; Ross S. Purves

Abstract Longitudinal valleys form first order topographic features in many mountain belts. They are commonly located along faults that separate tectonic zones with varying uplift histories. The Indus Valley of Ladakh, northern India, runs northwestwards following the boundary between the relatively undeformed Ladakh Batholith to the north–east and the folded and thrusted Zanskar mountains to the south–west. In this region the Shyok Valley, on the northern side of the batholith, approximately parallels the course of the Indus. This study investigates geomorphic variations in transverse catchments that drain the Ladakh Batholith, into the Indus and Shyok rivers. The batholith has been divided into three zones based on varying structural characteristics of its northeastern and southwestern boundaries. Morphometric analysis of 62 catchments that drain into the Indus and Shyok valleys was carried out using three digital datasets, and supported by field observations. Morphometric asymmetry is evident in the central zone where the Shyok valley is considered tectonically inactive, but the Indus Valley is bound by the northeastwardly thrusting Indus Molasse and the batholith. In this zone the catchments that drain into the Indus Valley are more numerous, shorter, thinner and have lower hypsometric integrals than those that drain into the Shyok. By linking these observations with the regional geology and thermochronological data it is proposed that high sediment discharge from the deformed Indus Molasse Indus Valley has progressively raised base levels in the Indus Valley and resulted in sediment blanketing of the opposing tectonically quiescent catchments that drain southwestwards off the batholith. The Indus Molasse thrust front has propagated at least 36 km towards the Ladakh Batholith over the last 20 Ma. Hence it is proposed that this long term asymmetric structural deformation and exhumation has forced the Indus longitudinal valley laterally into the Ladakh Batholith resulting in the morphometric asymmetry of its transverse catchments.


Journal of Geophysical Research | 2014

Understanding controls on rapid ice‐stream retreat during the last deglaciation of Marguerite Bay, Antarctica, using a numerical model

Stewart S. R. Jamieson; Andreas Vieli; Colm Ó Cofaigh; Chris R. Stokes; Stephen J. Livingstone; Claus-Dieter Hillenbrand

Using a one-dimensional numerical model of ice-stream flow with robust grounding-line dynamics, we explore controls on paleo-ice-stream retreat in Marguerite Bay, Antarctica, during the last deglaciation. Landforms on the continental shelf constrain the numerical model and suggest retreat was rapid but punctuated by a series of slowdowns. We investigate the sensitivity of ice-stream retreat to changes in subglacial and lateral topography, and to forcing processes including sea-level rise, enhanced melting beneath an ice shelf, atmospheric warming, and ice-shelf debuttressing. Our experiments consistently reproduce punctuated retreat on a bed that deepens inland, with retreat-rate slowdowns controlled by narrowings in the topography. Sensitivity experiments indicate that the magnitudes of change required for individual forcing mechanisms to initiate retreat are unrealistically high but that thresholds are reduced when processes act in combination. The ice stream is, however, most sensitive to ocean warming and associated ice-shelf melting and retreat was most likely in response to external forcing that endured throughout the period of retreat rather than to a single triggering ‘event’. Timescales of retreat are further controlled by the delivery of ice from upstream of the grounding line. Due to the influence of topography, modeled retreat patterns are insensitive to the temporal pattern of forcing evolution. We therefore suggest that despite regionally similar forcing mechanisms, landscape controls significant contrasts in retreat behavior between adjacent but topographically distinct catchments. Patterns of ice-stream retreat in the past, present and future should therefore be expected to vary significantly.


Journal of Maps | 2013

Glacial geomorphology of Marguerite Bay Palaeo-Ice stream, western Antarctic Peninsula

Stephen J. Livingstone; Colm Ó Cofaigh; Chris R. Stokes; Claus-Dieter Hillenbrand; Andreas Vieli; Stewart S. R. Jamieson

This paper presents a glacial geomorphological map of over 17,000 landforms on the bed of a major palaeo-ice stream in Marguerite Bay, western Antarctic Peninsula. The map was compiled using various geophysical datasets from multiple marine research cruises. Eight glacial landform types are identified: mega-scale glacial lineations, crag-and-tails, whalebacks, gouged, grooved and streamlined bedrock, grounding-zone wedges, subglacial meltwater channels, gullies and channels, and iceberg scours. The map represents one of the most complete marine ice-stream signatures available for scrutiny, and these data hold much potential for reconstructing former ice sheet dynamics, testing numerical ice sheet models, and understanding the formation of subglacial bedforms beneath ice streams. In particular, they record a complex bedform signature of palaeo-ice stream flow and retreat since the last glacial maximum, characterised by considerable spatial variability and strongly influenced by the underlying geology. The map is presented at a scale of 1: 750,000, designed to be printed at A2 size, and encompasses an area of 128,420 km2.


Antarctic Science | 2014

The glacial geomorphology of the Antarctic ice sheet bed

Stewart S. R. Jamieson; Chris R. Stokes; Neil Ross; David M. Rippin; Robert G. Bingham; Douglas S. Wilson; Martin Margold; Michael J. Bentley

Abstract In 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior of Antarctica by analysing the hypsometry of the subglacial landscape using a recently released dataset of bed topography (BEDMAP2). We used the existing classification as a basis for first developing a low-resolution description of landscape evolution under the ice sheet before building a more detailed classification of patterns of glacial erosion. Our key finding is that a more widespread distribution of ancient, preserved alpine landscapes may survive beneath the Antarctic ice sheets than has been previously recognized. Furthermore, the findings suggest that landscapes of selective erosion exist further inland than might be expected, and may reflect the presence of thinner, less extensive ice in the past. Much of the selective nature of erosion may be controlled by pre-glacial topography, and especially by the large-scale tectonic structure and fluvial valley network. The hypotheses of landscape evolution presented here can be tested by future surveys of the Antarctic ice sheet bed.


Science Advances | 2016

Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes

Bertie W. J. Miles; Chris R. Stokes; Stewart S. R. Jamieson

Recent retreat of outlet glaciers in Wilkes Land, East Antarctica, is driven by changes in sea ice. The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974–1990, before switching to advance in every drainage basin during the two most recent periods, 1990–2000 and 2000–2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica.


Journal of Glaciology | 2008

The impact of parametric uncertainty and topographic error in ice sheet modelling

Felix Hebeler; Ross S. Purves; Stewart S. R. Jamieson

Ice-sheet models (ISMs) developed to simulate the behaviour of continental-scale ice sheets under past, present or future climate scenarios are subject to a number of uncertainties from various sources. These sources include the conceptualization of the ISM and the degree of abstraction and parameterizations of processes such as ice dynamics and mass balance. The assumption of spatially or temporally constant parameters (such as degree-day factor, atmospheric lapse rate or geothermal heat flux) is one example. Additionally, uncertainties in ISM input data such as topography or precipitation propagate to the model results. In order to assess and compare the impact of uncertainties from model parameters and climate on the GLIMMER ice-sheet model, a parametric uncertainty analysis (PUA) was conducted. Parameter variation was deduced from a suite of sensitivity tests, and accuracy information was deduced from input data and the literature. Recorded variation of modelled ice extent across the PUA runs was 65% for equilibrium ice sheets. Additionally, the susceptibility of ISM results to modelled uncertainty in input topography was assessed. Resulting variations in modelled ice extent in the range of 0.8-6.6% are comparable to that of ISM parameters such as flow enhancement, basal traction and geothermal heat flux.


Geophysical Research Letters | 2016

Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier

Emily S. Langley; Amber Leeson; Chris R. Stokes; Stewart S. R. Jamieson

Supraglacial lakes are known to influence ice melt and ice flow on the Greenland ice sheet and potentially cause ice shelf disintegration on the Antarctic Peninsula. In East Antarctica, however, our understanding of their behavior and impact is more limited. Using >150 optical satellite images and meteorological records from 2000 to 2013, we provide the first multiyear analysis of lake evolution on Langhovde Glacier, Dronning Maud Land (69°11′S, 39°32′E). We mapped 7990 lakes and 855 surface channels up to 18.1 km inland (~670 m above sea level) from the grounding line and document three pathways of lake demise: (i) refreezing, (ii) drainage to the englacial/subglacial environment (on the floating ice), and (iii) overflow into surface channels (on both the floating and grounded ice). The parallels between these mechanisms, and those observed on Greenland and the Antarctic Peninsula, suggest that lakes may similarly affect rates and patterns of ice melt, ice flow, and ice shelf disintegration in East Antarctica.


Geology | 2016

An extensive subglacial lake and canyon system in Princess Elizabeth Land, East Antarctica

Stewart S. R. Jamieson; Neil Ross; Jamin S. Greenbaum; Duncan A. Young; Alan Aitken; Jl Roberts; Donald D. Blankenship; Sun Bo; Martin J. Siegert

The subglacial landscape of Princess Elizabeth Land (PEL) in East Antarctica is poorly known due to a paucity of ice thickness measurements. This is problematic given its importance for understanding ice sheet dynamics and landscape and climate evolution. To address this issue, we describe the topography beneath the ice sheet by assuming that ice surface expressions in satellite imagery relate to large-scale subglacial features. We find evidence that a large, previously undiscovered subglacial drainage network is hidden beneath the ice sheet in PEL. We interpret a discrete feature that is 140 × 20 km in plan form, and multiple narrow sinuous features that extend over a distance of ∼1100 km. We hypothesize that these are tectonically controlled and relate to a large subglacial basin containing a deep-water lake in the interior of PEL linked to a series of long, deep canyons. The presence of 1-km-deep canyons is confirmed at a few localities by radio-echo sounding data, and drainage analysis suggests that these canyons will direct subglacial meltwater to the coast between the Vestfold Hills and the West Ice Shelf.


Journal of Geophysical Research | 2015

Rapid advance of two mountain glaciers in response to mine-related debris loading.

Stewart S. R. Jamieson; Marek Ewertowski; David J.A. Evans

Abstract Rapid glacier advance is known to occur by a range of mechanisms. However, although large‐scale debris loading has been proposed as a process for causing rapid terminus advance, it has rarely been observed. We use satellite remote sensing data to observe accelerated glacier terminus advance in response to massive supraglacial loading on two glaciers in Kyrgyzstan. Over a 15 year period, mining activity has led to the dumping of spoil of up to 180 m thick on large parts of these valley glaciers. We find that the termini of these glaciers advance by 1.2 and 3.2 km, respectively, at a rate of up to 350 m yr−1. Our analysis suggests that although enhanced basal sliding could be an important process, massive supraglacial loads have also caused enhanced internal ice deformation that would account for most, or all, of the glacier terminus advance. In addition, narrowing of the glacier valley and mining and dumping of ice alter the mass balance and flow regime of the glaciers. Although the scale of supraglacial loading is massive, this full‐scale experiment provides insight into glacier flow acceleration response where small valley glaciers are impacted by very large volumes of landslide debris.

Collaboration


Dive into the Stewart S. R. Jamieson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus-Dieter Hillenbrand

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Bendle

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lisa Tauxe

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge